» » Классификация бактерий по типу питания. Бактерии — общая характеристика

Классификация бактерий по типу питания. Бактерии — общая характеристика

Понятие микроорганизмов

Микроорганизмы - это организмы, невидимые невооруженным глазом из-за их незначительных размеров.

Критерий размера - единственный, который их объединяет.

В остальном мир микроорганизмов еще более разнообразен, чем мир макроорганизмов.

Согласно современной систематике, микроорганизмы к 3 царствам:

  • Vira - вирусы;
  • Eucariotae - простейшие и грибы;
  • Procariotae — истинные бактерии, риккетсии, хламидии, мико-плазмы, спирохеты, актиномицеты.

Так же как для растений и животных, для названия микроор­ганизмов применяется бинарная номенклатура, т. е. родовое и видовое название.

Если видовую принадлежность исследователям определить не удается и определена только принадлежность к роду, то упот­ребляется термин species. Чаще всего это имеет место при идентификации микроорганизмов, имеющих нетрадиционные пищевые потребности или условия существования. Название рода обычно либо основано на морфологическом при­знаке соответствующего микроорганизма (Staphylococcus, Vibrio, Mycobacterium), либо является производным от фамилии автора, который открыл или изучил данный возбудитель (Neisseria, Shig-ella, Escherichia, Rickettsia, Gardnerella).

Видовое название часто связано с наименованием основного вы­зываемого этим микроорганизмом заболевания (Vibrio cholerae - холеры, Shigella dysenteriae - дизентерии, Mycobacterium tuberculosis - туберкулеза) или с основным местом обитания {Escherihia coli - кишечная палочка).

Кроме того, в русскоязычной медицинской литературе воз­можно использование соответствующего русифицированного на­звания бактерий (вместо Staphylococcus epidermidis - эпидер-мальный стафилококк; Staphylococcus aureus - золотистый ста­филококк и т. д.).

Царство прокариот

включает в себя отдел цианобактерий и отдел эубактерий, который, в свою очередь, подразделяется на порядки:

  • собственно бактерии (отделы Gracilicutes, Firmicutes, Tenericutes, Mendosicutes);
  • актиномицеты;
  • спирохеты;
  • риккетсии;
  • хламидии.

Порядки подразделяются на группы.

Прокариоты отличаются от эукариот тем, что не имеют :

  • морфологически оформленного ядра (нет ядерной мембраны и отсутствует ядрышко), его эквивалентом является нуклеоид, или генофор, представляющий собой замкнутую кольцевую двуни-тевую молекулу ДНК, прикрепленную в одной точке к цито-плазматической мембране; по аналогии с эукариотами эту мо­лекулу называют хромосомной бактерией;
  • сетчатого аппарата Гольджи;
  • эндоплазматической сети;
  • митохондрий.

Имеется также ряд признаков, или органелл, характерных для многих, но не для всех прокариот, которые позволяют отли­чать их от эукариотов :

  • многочисленные инвагинации цитоплазматической мембраны, которые называются мезосомами, они связаны с нуклеоидом и участвуют в делении клетки, спорообразовании и дыхании бак­териальной клетки;
  • специфический компонент клеточной стенки - муреин, по хими­ческой структуре это пептидогликан (диаминопиеминовая ки­слота);
  • плазмиды - автономно реплицирующиеся кольцевидные моле­кулы двунитевой ДНК с меньшей, чем хромосома бактерий, молекулярной массой. Они находятся наряду с нуклеоидом в цитоплазме, хотя могут быть и интегрированы в него, и несут наследственную информацию, не являющуюся жизненно не­обходимой для микробной клетки, но обеспечивающую ей те или иные селективные преимущества в окружающей среде.

Наиболее известны :

F-плазмиды, обеспечивающие конъюгационный перенос

между бактериями;

R-плазмиды - плазмиды лекарственной устойчивости, обес­печивающие циркуляцию среди бактерий генов, детермини­рующих устойчивость к используемым для лечения различ­ных заболеваний химиотерапевтическим средствам.

Бактерии

Прокариотические, преимущественно одноклеточные микроорганизмы, которые могут также образовывать ассоциа­ции (группы) сходных клеток, характеризующиеся клеточны­ми, но не организменными сходствами.

Основные таксономические критерии, позволяющие отнести штаммы бактерий к той или иной группе :

  • морфология микробных клеток (кокки, палочки, извитые);
  • отношение к окраске по Граму - тинкториальные свойства (грамположительные и грамотрицательные);
  • тип биологического окисления - аэробы, факультативные ана­эробы, облигатные анаэробы;
  • способность к спорообразованию.

Дальнейшая дифференциация групп на семейства, рода и ви­ды, которые являются основной таксономической категорией, проводится на основании изучения биохимических свойств. Этот принцип положен в основу классификации бактерий, приве­денной в специальных руководствах - определителях бактерий .

Вид является эволюционно сложившейся совокупностью осо­бей, имеющих единый генотип, который в стандартных усло­виях проявляется сходными морфологическими, физиологиче­скими, биохимическими признаками.

Для патогенных бактерий определение «вид» дополняется спо­собностью вызывать определенные нозологические формы забо­леваний.

Существует внутривидовая дифференцировка бактерий на варианты :

  • по биологическим свойствам — биовары или биотипы;
  • биохимической активности- ферментовары;
  • антигенному строению - серовары или серотжы;
  • чувствительности к бактериофагам - фаговары или фаготипы;
  • устойчивости к антибиотикам - резистентовары.

В микробиологии широко применяют специальные термины - культура, штамм, клон.

Культура - это видимая глазом совокупность бактерий на пи­тательных средах.

Культуры могут быть чистыми (совокупность бактерий одного вида) и смешанными (совокупность бактерий 2 или более видов).

Штамм - это совокупность бактерий одного вида, выделенных из разных источников или из одного источника в разное время.

Штаммы могут различаться по некоторым признакам, не вы­ходящим за пределы характеристики вида. Клон - это совокупность бактерий, являющихся потомством одной клетки.

Бактерии являются прокариотическими микроорганизмами клеточного строения. Их размеры - от 0,1 до 30 мкм. Микробы чрезвычайно распространены. Они живут в почве, воздухе, воде, в снегах и даже горячих источниках, на теле животных, а также внутри живых организмов, в том числе в организме человека.

Распределение бактерий на виды идет с учетом нескольких критериев, среди которых чаще всего принимают во внимание форму микроорганизмов и их пространственное размещение. Так, по форме клеток бактерии делятся на:

Коки - микро-, дипло-, стрепто-, стафилококки, а также сарцины;

Палочковидные - монобактерии, диплобактерии и стрептобактерии;

Извитые виды - вибрионы и спирохеты.

Определитель Берджи систематизирует все известные бактерии по нашедшим в практической бактериологии наибольшее распространение принципам идентификации бактерий, основанным на различиях в строении клеточной стенки и отношении к окраске по Граму. Описание бактерий даётся по группам (секциям), в состав которых включены семейства, роды и виды; в некоторых случаях в состав групп входят классы и порядки. Патогенные для человека бактерии входят в небольшое число групп.

Определитель выделяет четыре основных категории бактерий -

Gracillicutes [от лат. gracilis, изящный, тонкий, + cutis, кожа] - виды с тонкой клеточной стенкой, окрашивающиеся грамотрицательно ;

firmicutes [от лат. flrmus, крепкий, + cutis, кожа] - бактерии с толстой клеточной стенкой, окрашивающиеся грамположительно ;

Tenericutes [от лат. tener, нежный, + cutis, кожа] - бактерии, лишённые клеточной стенки (микоплазмы и прочие представители класса Mollicutes)

Mendosicutes [от лат. mendosus, неправильный, + cutis, кожа] - архебактерии (метан- и сульфатредуцирующие, галофильные, термофильные и архебактерии, лишённые клеточной стенки).

Группа 2 определителя Берджи. Аэробные и микроаэрофильные подвижные извитые и изогнутые грамотрицательные бактерии. Патогенные для человека виды входят в роды Campylobacter, Helicobacters Spirillum.

Группа 3 определителя Берджи. Неподвижные (редко подвижные) грамотрицательные бактерии. Не содержит патогенные виды.

Группа 4 определителя Берджи. Грамотрицательные аэробные и микроаэрофильные палочки и кокки. Патогенные для человека виды включены в состав семейств Legionellaceae, Neisseriaceae и Pseudomonada-сеае, в группу входят также патогенные и условно-патогенные бактерии родов Acinetobacter, Afipia, Alcaligenes, Bordetella, Brucella, Flavobacterium, Francisella, Kingella и Moraxella.

Группа 5 определителя Берджи. Факультативно анаэробные грамотрицательные палочки. Группа образована тремя семействами - Enterobacteriaceae, Vibrionaceae и Pasteurellaceae, каждое из которых включает патогенные виды, а также патогенные и условно-патогенные бактерии родов Calymmobaterium, Cardiobacterium, Eikenetta, Gardnerella и Streptobacillus.

Группа 6 определителя Берджи. Грамотрицательные анаэробные прямые, изогнутые и спиральные бактерии. Патогенные и условно-патогенные виды входят в состав родов Bacteroides, Fusobacterium, Porphoromonas и Prevotelta.

Группа 7 определителя Берджи. Бактерии, осуществляющие диссимиляционное восстановление сульфата или серы Не включает патогенные виды.

Группа 8 определителя Берджи. Анаэробные грамотрицательные кокки. Включает условно-патогенные бактерии poда Veillonella.

Группа 9 определителя Берджи. Риккетсии и хламидии. Три семейства - Rickettsiaceae, Bartonellaceae и Chlamydiaсеае, каждое из которых содержит патогенные для человека виды.

Группы 10 и 11 определителя Берджи включают анокси- и оксигенные фототрофные бактерии, не патогенные для человека.

Группа 12 определителя Берджи. Аэробные хемолитотрофные бактерии и родственные организмы. Объединяет серо- железо- и марганецокисляющие и нитрифицирующие бактерии, не вызывающие поражения у человека.

Группы 13 и 14 определителя Берджи включают почкующиеся и/или обладающие выростами бактерии и бактерии образующие футляры. Представлены свободноживущими видами, не патогенными для человек;

Группы 15 и 16 определителя Берджи объединяют скользящие бактерии, не образующие плодовые тела и образующие их. Группы не включают виды, патогенные для человека.

Группа 17 определителя Берджи. Грамположительные кокки. Включает условно-патогенные виды родов Enterococcus Leuconostoc, Peptococcus, Peptostreptococcus, Sarcina, Staphylococcus, Stomatococcus, Streptococcus.

Группа 18 определителя Берджи. Спорообразующие грамположительные палочки и кокки. Включает патогенные, условно-патогенные палочки родов Clostridium и Bacillus.

Группа 19 определителя Берджи. Споронеобразующие грамположительные палочки правильной формы. Включая условно-патогенные виды родов Erysipelothrix и Listeria.

Группа 20 определителя Берджи. Споронеобразующие грамположительные палочки неправильной формы. В состав группы входят патогенные и условно-патогенные виды родов Actinomyces, Corynebacterium Gardnerella, Mobiluncus и др.

Группа 21 определителя Берджи. Микобактерии. Включает единственный род Mycobacterium, объединяющий патогенные и условно-патогенные виды.

Группы 22-29. Актиномицеты. Среди многочисленных видов лишь нокардиоформные актиномицеты (группа 22) родов Gordona, Nocardia, Rhodococcus, Tsukamurella, Jonesia, Oerskovi и Terrabacter способны вызывать поражения у человека.

Группа 30 определителя Берджи. Микоплазмы. Патогенны для человека виды, включённые в состав рода Acholeplasma, Mycoplasma и Ureaplasma.

Остальные группы определителя Берджи - метаногенные бактерии (31), сульфатредуцируюшие бактерии (32 экстремально галофильные аэробные архебактерии (33), архебактерии, лишённые клеточно стенки (34), экстремальные термофилы и гипертермофилы, метаболизируюшие серу (35) - не содержат патогенные для человека виды.

Люди стараются найти новые способы обезопасить себя от их пагубного влияния. Но существуют и полезные микроорганизмы: способствующие созреванию сливок, образованию нитратов для растений, разлагающие мертвую ткань и др. Живут микроорганизмы в воде, почве, воздухе, на теле живых организмов и внутри них.

Формы бактерий

Существует основные 4 формы бактерии, а именно:

  1. Микрококки – располагающиеся отдельно или неправильными скоплениями. Обычно они неподвижны.
  2. Диплококки располагаются попарно, в организме могут быть окружены капсулой.
  3. Стрептококки встречаются в виде цепочек.
  4. Сарцины образуют скопления клеток, имеющих форму пакетов.
  5. Стафилококки. В результате процесса деления не расходятся, а образуют скопления (грозди).
Палочковидные типы (бациллы) различают по размеру, взаимному расположению и форме:

Бактерия имеет сложное строение:

  • Стенка клетки защищает одноклеточный организм от внешнего воздействия, придает определенную форму, обеспечивает питание и сохранение его внутреннего содержимого.
  • Цитоплазматическая мембрана содержит ферменты, участвует в процессе размножения, биосинтезе компонентов.
  • Цитоплазма служит для выполнения жизненно важных функций. У многих видов в цитоплазме содержится ДНК, рибосомы, различные гранулы, коллоидная фаза.
  • Нуклеоид - это ядерная область неправильной формы, в которой располагается ДНК.
  • Капсула является поверхностной структурой, которая делает оболочку более прочной, защищает от повреждений и пересыхания. Эта слизистая структура имеет толщину больше 0,2 мкм. При меньшей толщине ее называют микрокапсулой. Иногда вокруг оболочки находится слизь , не имеющая четких границ и растворимая в воде.
  • Жгутиками называют поверхностные структуры, служащие для передвижения клеток в жидкой среде или по твердой поверхности.
  • Пили – нитевидные образования, намного тоньше и меньше жгутиков. Они бывают различных типов, различаются по назначению, строению. Пили нужны для прикрепления организма к поражаемой клетке.
  • Споры . Спорообразование происходит при возникновении неблагоприятных условий, служат для приспособления вида или его сохранения.
Виды бактерий

Предлагаем рассмотреть основные виды бактерий:

Жизнедеятельность

Питательные вещества поступают внутрь клетки через всю ее поверхность. Микроорганизмы получили широкое распространение благодаря существованию у них различных типов питания. Для жизни им необходимы разнообразные элементы: углерод, фосфор, азот и др. Регулировка поступления питательных веществ осуществляется с помощью мембраны.

Тип питания определяется по тому, как происходит усвоение углерода и азота и по виду источника энергии. Одни из них могут получать эти элементы из воздуха, использовать солнечную энергию, а другим для существования необходимы вещества органического происхождения. Все они нуждаются в витаминах, аминокислотах, способных играть роль катализаторов реакций, идущих в их организме. Вывод веществ из клетки происходит за счет процесса диффузии.

У многих типов микроорганизмов важную роль в обмене веществ и дыхании играет кислород. В результате дыхания происходит выделение энергии, используемой ими для образования органических соединений. Но существуют бактерии, кислород для которых смертелен.

Размножение происходит путем деления клетки на две части. После того, как она достигает определенных размеров, начинается процесс разделения. Клетка удлиняется и в ней образовывается поперечная перегородка. Образовавшиеся части расходятся, но некоторые виды остаются связанными и образуют скопления. Каждая из вновь образовавшихся частей питается и растет, как самостоятельный организм. При попадании в благоприятную среду процесс размножения происходит с большой скоростью.

Микроорганизмы способны разлагать сложные вещества на простые, которые потом могут вновь использоваться растениями. Поэтому бактерии незаменимы в круговороте веществ, без них невозможны были бы многие важные процессы на Земле.

А знаете ли вы?

Вывод: Не забывайте мыть руки всякий раз, когда приходите домой после улице. Сходив в туалет, также мойте руки с мылом. Простое правило, а какое важное! Следите за чистотой, и бактерии вас не будут тревожить!

Для закрепления материала предлагаем пройти наши увлекательные задания. Желаем удачи!

Задание №1

Внимательно посмотрите на картинку и скажите, какая из этих клеток является бактериальной? Попробуйте назвать оставшиеся клетки, не подглядывая в подсказки:

По форме всœе бактерии делятся на 3 группы:

— шаровидные или кокки

— палочковидные или палочки

— извитые формы бактерий.

Кокки имеют округлую, шаровидную, овальную, пламени свечи, ланцетовидную форму и подразделяются на 6 подгрупп исходя из способа соединœения.

1 микрококки;

2 диплококки;

3 тетракокки;

4 стрептококки;

5 стафилококки;

6 сарцины.

Все кокки неподвижны, не образуют спор.

Широко распространены в природе. Входят в состав заквасок кисломолочных. Могут быть болезнетворными (ангина, гонорея, менингит).

Палочковидные бактерии имеют вытянутую форму. Длина больше ширины. Легко меняют свою форму исходя из условий жизни, ᴛ.ᴇ. обладают полиморфизмом. Палочки — наиболее распространенная группа среди всœех бактерий. Могут быть не болезнетворными, но могут вызывать различные заболевания (тиф, дизентерия).

Палочки бывают подвижными и неподвижными образовывать и необразовывать споры. По способности образования споры палочки делятся на три группы:

— бактерии;

— бациллы;

— клостридии.

Извитые формы бактерий делятся на три группы:

1. вибрионы;

2. спириллы;

3. спирохеты.

Все извитые формы болезнетворные.

Строение и функции клеточной оболочки бактерий.

Клеточная оболочка покрывает клетку снаружи. Это плотная, упругая структура, выдерживающая перепад давления, состоящая из двух частей – наружной части, называемой клеточной стенкой и внутренней части – цитоплазматической мембраны (ЦПМ). И стенка и мембрана имеет поры (отверстия) через которые в клетку проходят питательные вещества и удаляются продукты жизнедеятельности. При этом через поры клеточной стенки питательные вещества проходят по молекулярной массе не более 1000, ᴛ.ᴇ. стенка при питании выполняет функции механического сита. Через поры ЦПМ питательные вещества проходят не по массе, а по мере нужнобности, ᴛ.ᴇ. она обладает полупроницаемостью.

Клеточная оболочка выполняет ряд важнейших функций:

1 – поддерживает форму тела;

2 – защищает клетку от внешних воздействий;

3 – участвует в обмене веществ клетки, ᴛ.ᴇ. пропускает питательные вещества и выделяет продукты жизнедеятельности;

4 – участвует в передвижении клетки. Бактерии, лишенные клеточной оболочки теряют подвижность;

5 – участвуют в образовании капсулы.

  • — Классификация бактерий по форме.

    По форме все бактерии делятся на 3 группы: — шаровидные или кокки — палочковидные или палочки — извитые формы бактерий. Кокки имеют округлую, шаровидную, овальную, пламени свечи, ланцетовидную форму и подразделяются на 6 подгрупп в зависимости от способа… [читать подробнее].

  • Микробы, наиболее часто встречающиеся в процессе приготовления пищи, делят на бактерии, плесневые грибы, дрожжи и вирусы. Большинство микробов - одноклеточные организмы, размер которых измеряется в микрометрах - мкм (1/1000 мм) и нанометрах - нм (1/1000 мкм).

    Бактерии - одноклеточные, наиболее изученные микроорганизмы размером 0,4-10 мкм. По форме их делят на кокки - микробы шаровидной формы (микрококки, диплококки, тетракокки, сарци-ны, стрептококки, стафилококки), палочки (одиночные, двойные, цепочки), вибрионы, спириллы и спирохеты (изогнутые и спирально извитые формы). Размеры и форма бактерий могут изменяться в зависимости от различных факторов внешней среды (рис. 3).

    Рис. 3. Формы бактерий:

    1 - микрококки; 2 - стрептококки; 3 - сарцины; 4 - палочки без спор;

    5 - палочки со спорами (бациллы); 6 - вибрионы; 7 - спирохеты;

    8 - спириллы.

    Бактерии покрыты оболочкой, представляющей собой уплотненный слой цитоплазмы, которая придает клетке форму. Наружный слой оболочки у многих бактерий может ослизняться, образуя защитный покров - капсулу. Основной частью клетки является цитоплазма - прозрачная белковая масса, пропитанная клеточным соком. В цитоплазме находятся ядерное вещество, запасные питательные ве­щества (зерна крахмала, капельки жира, гликоген, белок) и другие клеточные структуры. На поверхности некоторых бактерий (палочковидных) имеются нитевидные образования - жгутики (одиночные, в виде пучка или по всей поверхности), с помощью которых они передвигаются.

    Некоторые палочковидные бактерии при неблагоприятных условиях образуют споры (сгущенная цитоплазма, покрытая плотной оболочкой). Споры не нуждаются в питании, не способны размножаться, но сохраняют свою жизнеспособность при высоких температурах, высушивании, замораживании в течение нескольких месяцев (палочка ботулинуса) или даже многих лет (палочка сибирской язвы). Споры погибают при стерилизации (нагревании до 120°С в течение

    29 мин). В благоприятных условиях они прорастают в обычную (вегетативную) бактериальную клетку. Спорообразующие бактерии называются бациллами.

    Размножаются бактерии путем простого деления. При благоприятных условиях размножение одной клетки протекает в течение 20 -

    30 мин. С накоплением вредных продуктов жизнедеятельности бактерий и исчерпанием питательных ресурсов процесс размножения прекращается.

    Плесневые грибы- одноклеточные или многоклеточные низшие растительные организмы, в своей жизнедеятельности нуждающиеся в готовых пищевых веществах и в доступе воздуха. Клетки плесневых грибов имеют форму вытянутых переплетающихся нитей - гифов толщиной 1-15 мкм, образующих тело плесени - мицелий (грибницу), состоящий из одной или многих клеток. На поверхности мицелия развиваются плодовые тела, в которых созре­вают споры (рис. 4).

    По строению клетки плесневых грибов отличаются от бактериальных клеток тем, что имеют одно или несколько ядер и вакуолей (полостей, заполненных клеточной жидкостью). Размножаются плесневые грибы с помощью гиф и спорами.

    Плесневые грибы широко распространены в природе. Развиваясь на пищевых продуктах, они образуют пушистые налеты разного цвета. Плесневые грибы выделяют вещества, придающие пищевым продуктам плесневелый запах и вкус. Они могут развиваться при низкой влажности (15 %), что объясняет плесневение сухофруктов, сухарей,

    Рис. 4. Виды плесневых грибов:

    1 - пенициллиум; 2 - аспергиллус; 3 - мукор..

    при повышенной концентрации соли и кислот (на соленых и кислых продуктах), при низкой температуре, поражая продукты, хранящиеся в холодильниках.

    Среди плесневых грибов есть полезные, используемые при производстве сыров («Рокфор», «Камамбер»), лимонной кислоты и ле­карственных препаратов (пенициллин).

    Дрожжи - одноклеточные неподвижные микроорганизмы. Клетки дрожжей размером до 15 мкм бывают разной формы: круглые, овальные, палочковидные (рис. 5). Они имеют четко выраженное крупное ядро, вакуоли и различные включения в цитоплазме в виде капелек жира, гликогена и т. д.

    Дрожжи размножаются в благоприятных условиях в течение нескольких часов следующими способами: почкованием, спорами (1 - 112 шт. в клетке), делением. Дрожжи широко распространены в природе. Они способны расщеплять (сбраживать) сахара в спирт и углекислый газ. Спиртовое брожение используется в виноделии, хлебопечении и в производстве кисломолочных продуктов (кефира, ку­мыса). Некоторые дрожжи отличаются высоким содержанием белков, жиров, витаминов группы В, минеральных веществ, поэтому при­меняются как пищевой и кормовой продукт.

    Классификация бактерий по форме

    5. Формы клеток дрожжей:

    1 - яйцевидные; 2 - эллипсовидные; 3 - цилиндрические (палочковидные);

    4 - шаровидные; 5 - лимонообразные; 6 — дрожжи, размножающиеся делением и спорами.

    Вирусы — частицы, не имеющие клеточного строения, обладающие своеобразным обменом веществ, способностью к размножению. Они бывают круглой, прямоугольной и нитевидной формы, размером от 8 до 150 нм. Их можно увидеть только с помощью электронных микроскопов.

    ⇐ Предыдущая123456789Следующая ⇒

    Дата публикования: 2015-11-01; Прочитано: 1474 | Нарушение авторского права страницы

    Studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

    Характеристика плесневых грибов (часть 1)

    Плесневые грибы, или плесени, как их принято называть, распространены повсеместно. Они относятся к различным классам грибов. Все они являются гетеротрофами и, развиваясь на пищевых продуктах (фруктах, овощах и других материалах растительного или животного происхождения), вызывают их порчу.

    Классификация бактерий

    На поврежденной поверхности появляется пушистый налет, первоначально белого цвета. Это - мицелий гриба. Вскоре налет окрашивается в различные цвета от светлого до темного оттенков. Эта окраска образуется массой спор и помогает распознавать плесени.

    Из плесеней в виноградном сусле чаще всего встречаются Мuсоr (мукор), Penicillium (пенициллиум) и Aspergillus (аспергиллус).

    Мuсоr относится к семейству мукоровых класса фикомицетов подкласса зигомицетов. У этой плесени одноклеточный сильно разветвленный мицелий, бесполое размножение осуществляется при помощи спорангиоспор, а половое — зигоспорами. У мукора спорангиеносцы одиночные, простые или ветвящиеся (рис.21).

    Рис.21. Phicomycetes:
    а — Мuсоr; б — Rizopus.

    К этому же семейству относится и род Rizopus (ризопус), отличающийся от мукора неветвистыми спорангиеносцами, расположенными кустиками на особых гифах — столонах.

    Многие мукоровые грибы способны вызывать спиртовое брожение. Некоторые мукоровые грибы (Мuсоr racemosus), развиваясь в сахаристых жидкостях, образуют при недостатке воздуха дрожжеподобные клетки, размножающиеся почкованием, вследствие чего их называют мукоровыми дрожжами.

    Плесени Penicillium (рис.22) и Аsреrgillus (рис.23) относятся к плодосумчатым грибам класса Ascomycetes. У них многоклеточный мицелий, размножаются преимущественно конидиоспорами, окрашенными в различные цвета и образующимися на характерной формы конидиеносцах. Так, у Penicillium конидиеносец многоклеточный, ветвистый, имеющий вид кисточек, поэтому его называют еще кистевиком.

    Рис.22. Penicillium:
    1 — гифа; 2 — конидиеносец; 3 — cтepигмы; 4 — конидиоспоры.

    Рис.23. Aspergillus niger (конидиеносец):
    1 — стеригмы; 2 — конидии.

    У Aspergillus конидиеносец одноклеточный, со вздутой верхушкой, на поверхности которой расположены радиально вытянутые клеточки — стеригмы с цепочками конидиоспор.

    Плодовые тела у этих грибов образуются редко и имеют вид мелких шариков, внутри которых беспорядочно расположены сумки со спорами.

    Penicillium и Aspergillus являются возбудителями порчи пищевых продуктов и органических материалов. Развиваясь на поверхности сусла, на бочках, на стенках подвалов, они являются опасными врагами винодельческого производства. Они могут проникать в бочковую клепку на глубину 2,5 см. Тара, зараженная плесенью, придает винам неприятный и почти неустранимый плесневый тон.

    Некоторые виды этих грибов имеют техническое значение. Так, Penicillium notatum (пенициллиум нотатум) используется для получения антибиотика — пенициллина. Различные виды Aspergillus, Penicillium, Botrytis и некоторых других грибов используют для приготовления ферментных препаратов (нигрин, аваморин). Вид Aspergillus niger (аспергиллус нигер) применяют для производства лимонной кислоты, а Aspergillus oryzae (аспергиллус оризе) — в производстве японского национального спиртового напитка из риса — сакэ. Оба эти вида обладают способностью осахаривать крахмал и могут использоваться в производстве спирта вместо солода.

    часть 1 >>> часть 2 >>> часть 3

    1 2 3 4 5 6 7 8 9

    ОБЩАЯ МИКРОБИОЛОГИЯ

    1. Предмет, задачи, разделы микробиологии, ее связь с другими науками.

    Микробиология - наука о живых организмах, невидимых невооруженным глазом (микроорганизмах): бактерии, архебактерии, микроскопические грибы и водоросли, часто этот список продляют простейшими и вирусами. В область интересов микробиологии входит их систематика, морфология, физиология, биохимия, эволюция, роль в экосистемах, а также возможности практического использования.

    Предметом изучения микробиологии являются бактерии, плесневые грибы, дрожжи, актиномицеты, риккетсии, микоплазмы, вирусы. Но поскольку вирусы абсолютно не могут существовать без живого организма, изучением их занимается самостоятельная наука, называемая «вирусологией».

    Цель медицинской микробиологии - изучение структуры и свойств патогенных микробов, взаимоотношения их с организмом человека в определенных условиях природной и социальной среды, совершенствование методов микробиологической диагностики, разработка новых, более эффективных лечебных и профилактических препаратов, решение такой важной проблемы, как ликвидация и предупреждение инфекционных болезней.

    Разделы микробиологии: бактериология, микология, вирусология и т. д.

    • *Общая микробиология – изучает закономерности жизнедеятельности всех групп микроорганизмов, выясняет роль и значение в природном круговороте.
    • *Частная микробиология – изучает систематику бактерий, возбудителей отдельных заболеваний и методы их лабораторной диагностики.

    В составе обширной науки микробиологии выделяют разделы:

    • *Сельскохозяйственная микробиология изучает роль и формирование структуры почвы и ее плодородия, роль бактерий в питании растений.

      Разрабатывает методы и способы использования бактерий для удобрения почв и консервирования кормов.

    • *Ветеринарная микробиология – изучает микробов, вызывающих заболевания у домашних животных, разрабатывает методы диагностики, профилактики и лечения данных болезней.
    • *Техническая (промышленная) микробиология – изучает микроорганизмы, которые можно использовать в производственных процессах для получения биологически активных веществ, биомассы и пр. Многие исследования происходят на стыке дисциплин (например, молекулярная биология, генная инженерия, биотехнология).
    • *Санитарная микробиология изучает бактерий, обитающих в объектах окружающей среды, как автохтонных, так и аллохтонных, способных вызвать загрязнение окружающей среды и играть определенную роль в эпидемиологии инфекций.
    • *Экологическая микробиология изучает роль микроорганизмов в природных экосистемах и пищевых цепях.
    • *Популяционная микробиология выясняет природу межклеточных контактов и взаимосвязь клеток в популяции.
    • *Космическая микробиология характеризует физиологию земных микроорганизмов в условиях космоса, изучает влияние космоса на симбиотические бактерии человека, занимается вопросами предупреждения занесения космических микроорганизмов на Землю.
    • *Медицинская микробиология – изучает микробов, вызывающих заболевания у человека. Изучает патогенез и клиническую картину заболеваний, факторы патогенности. Разрабатывает методы профилактики, диагностики и лечения инфекционных болезней человека.

    За время существования микробиологии сформировались общая, техническая, сельскохозяйственная, ветеринарная, медицинская, санитарная ветви.

    Общая изучает наиболее общие закономерности, свойственные каждой группе перечисленных микроорганизмов: структуру, метаболизм, генетику, экологию и т. д.

    Техническая занимается разработкой биотехнологии синтеза микроорганизмами биологически активных веществ: белков, нуклеиновых кислот, антибиотиков, спиртов, ферментов, а также редких неорганических соединений.

    Сельскохозяйственная исследует роль микроорганизмов в круговороте веществ, использует их для синтеза удобрений, борьбы с вредителями.

    Ветеринарная изучает возбудителей заболеваний животных, методы диагностики, специфической профилактики и этиотропного лечения, направленного на уничтожение возбудителя инфекции в организме больного животного.

    Медицинская микробиология изучает болезнетворные(патогенные) и условно-патогенные для человека микроорганизмы, а также разрабатывает методы микробиологической диагностики, специфической профилактики и этиотропного лечения вызываемых ими инфекционных заболеваний.

    Санитарная микробиология изучает санитарно-микробиологическое состояние объектов окружающей среды, пищевых продуктов и напитков, и разрабатывает санитарно-микробиологические нормативы и методы индикации патогенных микроорганизмов в различных объектах и продуктах

    Основные этапы развития микробиологии.

    Выделяют следующие 5 периоды: эвристический, морфологический, физиологический, иммунологический, молекулярно-генетический

    1. Эвристический: IV-III тыс. до н.э. – эмпирические знания. Гиппократ : предполагал о природе заразности заболеваний. Факасторо : идея о живом контагии, вызывающем болезни; рекомендовал изолировать больных и надевать маски
    2. Морфологический: Открытие в 1676г. ^ Антонием ван Левенгуком ; изготовление линз, увеличивающих в 200-300 раз. Описал и зарисовал многие микроорганизмы, обнаруженные в различных настоях, в колодезной воде, на мясе и др. объектах. Назвал микробы «анималькулюсами».
    3. Физиологический: Луи Пастер (1822-1895) французский ученый-химик; основоположник микробиологии, иммунологии, биотехнологии но и характером жизнедеятельности; они вызывают разнообразные химические превращения в субстратах, на которых развиваются; он изучал различные виды брожения (спиртовое, маслянокислое), доказал существование анаэробных организмов
      Значительным вкладом в микробиологию явились исследования немецкого ученого Роберта Коха (1843-1910).

      Им были введены в практику плотные питательные среды для выращивания микробов; это позволило разработать методы выделения (изолирования) микробов в «чистые культуры», т. е. культуры каждого вида в отдельности, развывшееся в одной клетке. Ввел окраску анилиновыми красителями. Микрофотографии. Изучал возбудителей сибирской язвы, туберкулеза, холеры и др. заразных болезней; Сформулировал триаду Коха-Генле: найди, докажи, уничтожь. В 1905 – нобелевская премия.

    4. Иммунологический: Многочисленные открытия в области микробиологии во второй половине XIX в.

      Приведите классификацию бактерий по их форме

      способствовали началу бурного развития иммунологии.
      ^ И. И. Мечников (1845-1916) разработал фагоцитарную теорию иммунитета — невосприимчивости организма к заразным болезням. Ему принадлежит идея использования антагонистических отношений между микробами, что легло в основу современного учения об антибиотиках; с ним связано развитие микробиологии в России; он организовал первую в России бактериологическую лабораторию (в Одессе). В 1903 – нобелевская премия. Пауль Эрлих : немецкий химик. Разработал теорию гуморальной защиты организма антителами. Получил Нобелевскую премию в 1908г.

    5. Молекулярно-генетический: Стенли Прузинер : американский биолог. Открыл прионы-эндогенные клеточные образование, связанные с ошибками биосинтеза белка, которые обусловлены мутацией генов, ошибвами трансляции, процессами протеолиза Н. Ф. Гамалея (1859 — 1949) изучал вопросы медицинской микробиологии; открыл станцию по прививкам против бешенства; описал явление бактериофагов

    3. Классификация микроорганизмов. Различия между эукариотами, прокариотами и вирусами.

    Микробы, или микроорганизмы (бактерии, грибы, простейшие, вирусы), систематизиро­ваны по их сходству, различиям и взаимо­отношениям между собой. Этим занимается специальная наука - систематика микроор­ганизмов. Систематика включает три части: классификацию, таксономию и идентифика­цию. В основу таксономии микроорганизмов поло­жены их морфологические, физиологические, биохимические и молекулярно-биологические свойства. Различают следующие таксономи­ческие категории: царство, подцарство, отдел, класс, порядок, семейство, род, вид, подвид и др. В рамках той или иной таксономичес­кой категории выделяют таксоны - группы организмов, объединенные по определенным однородным свойствам.

    Микроорганизмы представлены доклеточными формами (вирусы - царство Vira) и клеточными формами (бактерии, архебактерии, грибы и простейшие). Различают 3 доме­на (или «империи»): «Bacteria», «Archaea» и «Eukarya»:

    домен «Bacteria» - прокариоты, пред­ставленные настоящими бактериями (эубактериями);

    домен «Archaea» - прокариоты, пред­ставленные архебактериями;

    домен «Eukarya» - эукариоты, клетки которых имеют ядро с ядерной оболочкой и ядрышком, а цитоплазма состоит из высоко­организованных органелл - митохондрий, аппарата Гольджи и др. Домен «Eukarya» вклю­чает: царство Fungi (грибы); царство животных Animalia (включает прстейшие – подцарство Protozoa); царство растений Plante. Домены включают царства, типы, классы, порядки, семейства, роды, виды.

    Вид . Одной из ос­новных таксономических категорий является вид (species ). Вид - это совокупность особей, объединенных по близким свойствам, но от­личающихся от других представителей рода.

    Чистая культура . Совокупность однородных микроорганиз­мов, выделенных на питательной среде, характеризующихся сходными морфологичес­кими, тинкториальными (отношение к кра­сителям), культуральными, биохимическими и антигенными свойствами, называется чис­той культурой.

    Штамм . Чистая культура микроорганизмов, выделен­ных из определенного источника и отличаю­щихся от других представителей вида, называ­ется штаммом. Штамм - более узкое понятие, чем вид или подвид.

    Клон . Близким к понятию штам­ма является понятие клона. Клон представляет собой совокупность потомков, выращенных из единственной микробной клетки.

    Для обозначения некоторых совокупностей микроорганизмов, отличающихся по тем или иным свойствам, употребляется суффикс var (разновидность) вместо ранее применявшегося type .

    4. Классификация бактерий. Принципы современной систематики и номенклатуры, основные таксономические единицы. Понятие о виде, варианте, культуре, популяции, штамме.

    Наибольшую известность получила фенотипическая классификация бактерий, основанная на строении их клеточной стенки.

    Крупнейшими таксономическими группами в ней стали 4 отдела: Gracilicutes (грамотрицательные), Firmicutes (грамположительные ), Tenericutes (микоплазмы ; отдел с единственным классом Mollicutes ) и Mendosicutes (археи ) Mollicutes -Микоплазмы - прокариотные одноклеточные , грамотрицательные микроорганизмы , не имеющие клеточной стенки , которые были открыты при изученииплевропневмонии у коров .

    Микоплазмы, по всей видимости, являются наиболее простыми самостоятельно воспроизводящимися живыми организмами, объём их генетической информации в 4 раза меньше, чем у Escherichia coli .

    Многочисленные микроорганизмы (бактерии, грибы, простейшие, вирусы) строго систематизированы в определенном порядке по их сходству, различиям и взаимоотношениям между собой. Этим занимается специальная наука, называемая систематикой микроорганизмов.

    Раздел систематики, изучающий принципы классификации, называется таксономией (от греч.

    taxis . расположение, порядок). Таксон. группа организмов, объединенная по определенным однородным свойствам в рамках той или иной таксономической категории. Самой крупной таксономической категорией является царство, более мелкими. подцарство, отдел, класс, порядок, семейство, род, вид, подвид и др. Образование названий микроорганизмов регламентируется Международным кодексом номенклатуры (зоологической, ботанической, номенклатуры бактерий, вирусов). В основу таксономии микроорганизмов положены их морфологические, изиологические, биохимические, молекулярно-биологические свойства.

    Согласно современной систематике, патогенные (болезнетворные) бактерии относятся к надцарству прокариотов (Procaryotae), царству эукариот (Eucaryotae), грибы - к царству микота (Mycota), простейшие - к царству Protozoa, вирусы - к царству Vira.

    Вид - совокупность микроорганизмов, имеющих общий корень происхождения и максимально близкие фенотипические признаки и свойства. (Вид - эволюционно сложившаяся совокупность особей, имеющих единый тип организации, который в стандартных условиях проявляется сходными фенотипическими признаками: морфологическими, физиологическими, биохимическими и др.)

    Популяция - совокупность особей одного вида, обитающих в пределах биотопа (территориально ограниченный участок биосферы с относительно однородными условиями жизни).

    Штамм - чистые культуры микробов одного вида, полученные из разных источников или из одного источника в разное время.

    Чистая культура - популяция состоящая из особей одного вида. (из одной микробной клетки на искусственной питательной среде).

    5. Методы микроскопии. Микроскопический метод диагностики инфекционных заболеваний.

    Люминесцентная (или флюоресцентная) микроскопия. Осно­вана на явлении фотолюминесценции.

    Люминесценция - свечение веществ, возникающее после воз­действия на них каких-либо источников энергии: световых, элек­тронных лучей, ионизирующего излучения. Фотолюминесцен­ция - люминесценция объекта под влиянием света. Если осве­щать люминесцирующий объект синим светом, то он испускает лучи красного, оранжевого, желтого или зеленого цвета. В ре­зультате возникает цветное изображение объекта.

    Темнопольная микроскопия. Микроскопия в темном поле зре­ния основана на явлении дифракции света при сильном боковом освещении взвешенных в жидкости мельчайших частиц (эффект Тиндаля). Эффект достигается с помощью параболоид- или кардиоидконденсора, которые заменяют обычный конденсор в био­логическом микроскопе.

    Фазово-контрастная микроскопия. Фазово-контрастное приспособление дает возможность увидеть в микроскоп прозрачные объекты. Они приобретают высокую контрастность изображения, которая может быть позитивной или негативной. Позитивным фазовым контрастом называют темное изображение объекта в светлом поле зрения, негативным - светлое изображение объек­та на темном фоне.

    Для фазово-контрастной микроскопии используют обычный микроскоп и дополнительное фазово-контрастное устройство, а также специальные осветители.

    Электронная микроскопия. Позволяет наблюдать объекты, размеры которых лежат за пределами разрешающей способно­сти светового микроскопа (0,2 мкм). Электронный микроскоп применяется для изучения вирусов, тонкого строения различных микроорганизмов, макромолекулярных структур и других субмик­роскопических объектов.

    В повседневной практике бактериологической лаборатории микроскопическое исследование, как правило, используют для ускоренной ориентировочной диагностики.

    Основные задачи микроскопии: выявление возбудителя в клиническом материале, ориентировочная идентификация на основе определения характерных морфологических и тинкториальных признаков микроорганизмов, а также изучение окрашенных мазков из колоний чистых культур. При некоторых инфекционных болезнях, для возбудителей которых характерна специфичность морфологии (протозойные болезни, гельминтозы, грибковые заболевания, спирохетозы), микроскопическое исследование - основной или один из основных методов диагностики.

    Материалом для микроскопического исследования могут служить кровь, костный мозг, СМЖ, пунктаты лимфатических узлов, фекалии, дуоденальное содержимое и жёлчь, моча, мокрота, отделяемое мочеполовых путей, биоптаты тканей, мазки со слизистых оболочек (ротовой полости, нёбных миндалин, носа, влагалища и др.).

    6. Методы окраски микробов и их отдельных структур.

    Методы окраски. Окраску мазка производят простыми или сложными методами. Простые заключаются в окраске препарата одним красителем; сложные методы (по Граму, Цилю - Нильсену и др.) включают последовательное использование нескольких красителей и имеют дифференциально-диагностическое значение. Отношение микроорганизмов к красителям расценивают как тинкториальные свойства. Существуют специальные методы окраски, которые используют для выявления жгутиков, клеточной стенки, нуклеоида и разных цитоплазматических включений.

    При простых методах мазок окрашивают каким-либо одним красителем, используя красители анилинового ряда (основные или кислые). Если красящий ион (хромофор) - катион, то краситель обладает основными свойствами, если хромофор — анион, то краситель имеет кислые свойства. Кислые красители - эритрозин, кислый фуксин, эозин. Основные красители - генциановый фиолетовый, кристаллический фиолетовый, метиленовый синий, основной фуксин. Преимущественно для окраски микроорганизмов используют основные красители, которые более интенсивно связываются кислыми компонентами клетки. Из сухих красителей, продающихся в виде порошков, готовят насыщенные спиртовые растворы, а из них - водно-спиртовые, которые и служат для окрашивания микробных клеток. Микроорганизмы окрашивают, наливая краситель на поверхность мазка на определенное время. Окраску основным фуксином ведут в течение 2 мин, метиленовым синим - 5-7 мин. Затем мазок промывают водой до тех пор, пока стекающие струи воды не станут бесцветными, высушивают осторожным промоканием фильтровальной бумагой и микроскопируют в иммерсионной системе. Если мазок правильно окрашен и промыт, то поле зрения совершенно прозрачно, а клетки интенсивно окрашены.

    Сложные методы окраски применяют для изучения структуры клетки и дифференциации микроорганизмов. Окрашенные мазки микроскопируют в иммерсионной системе. Последовательно нанести на препарат определенные красители, различающиеся по химическому составу и цвету, протравы, спирты, кислоту и др.

    1 2 3 4 5 6 7 8 9

    Микробиология – наука, изучающая строение, свойства и жизнедеятельность микроорганизмов. Пища является благоприятной питательной средой для развития микробов, которые своим действием могут изменить свойства и качество пищи, делая её опасной для здоровья человека.

    Микробы – одноклеточные организмы – широко распространены в почве, воде, воздухе.

    Одни микробы играют положительную, а другие отрицательную роль.

    Морфология микробов (бактерии, плесневелые грибы, дрожжи, вирусы)

    Название микробов

    Форма

    Способ размножения

    Бактерии – одноклеточные микроорганизмы размером 0,4 – 10 мкм.

    Делят на:

    1) кокки – шаровидной формы (микрококки, диплококки, тетракокки)

    2) палочки (одиночные, двойные, цепочки)

    3. вибрионы изогнутые и

    4. спириллы спирально извитые

    5. спирохеты формы

    Путем простого деления в течении 20-30 минут.

    Плесневелые грибы – одноклеточные или многоклеточные растительные организмы, нуждающиеся в пищевых продуктах и в доступе воздуха.

    Имеют форму вытянутых переплетающихся нитей толщиной 1-15 мкм.

    С помощью гиф и спорами.

    Дрожжи – одноклеточные неподвижные микроорганизмы.

    Бывают разной формы: круглые, овальные, палочковидные

    В благоприятных условиях в течении нескольких часов следующими способами: почкованием, спорами и делением.

    Вирусы – частицы, не имеющие клеточного строения, обладающие своеобразным обменом веществ, способностью к размножению.

    Бывают круглой, прямоугольной и нитевидной формы размером от 8 до 150 нм.

    Физиология микробов

    Микробы, как и все живые существа, состоят из белков (6-14 %), жиров (1-4 %), углеводов, минеральных веществ, воды (70-85 %), ферментов.

    Вода составляет основную массу клетки микроорганизма. Количе-ство ее колеблется от 70 до 85 % - в вегетивных клетках и около 50 % в спорах. В воде растворены все важные органические и минеральные вещества микробной клетки и протекают основные биохимичес-кие процессы (гидролиз белков, углеводов и др.).

    Белки - основа жизненных структур микроорганизмов. Они вхо-дят в состав цитоплазмы, ядра, оболочек и другие структуры клетки. 1>елки микробов состоят из аминокислот.

    Углеводы - входят в состав оболочки, слизистых капсул, прото-плазмы и в виде зерен гликогена - запасного питательного вещества. Углеводы поступают в клетку микробов из окружающей среды и используются клеткой как источник энергии.

    Классификация и физиология микроорганизмов

    В клетках имеются как простые углеводы, так и сложные (крахмал, гликоген, клетчатка).

    Жиры - в небольшом количестве входят в состав цитоплазмы, ядра в виде сложных соединений с белками. Жиры служат источни-ком энергии микроорганизмов.

    Минеральные вещества играют важную роль в построении слож-ных белков, витаминов, ферментов микробной клетки. Растворимые минеральные вещества поддерживают нормальный уровень внутри-клеточного осмотического давления (тургор).

    Минеральные вещества микробов представлены в виде: фосфора, натрия, магния, железа, серы и др.

    Ферменты - вещества ускоряющие (катализаторы) биохимичес-кие процессы и находятся внутри клетки микробов. Микробы содер-жат различные ферменты, одни из которых влияют на биохимичес-кие процессы внутри клетки, другие выделяются наружу, перераба-тывая вещества окружающей среды, вызывая брожение, гниение и другие процессы в пищевых продуктах.

    Питание микробов. Микробы питаются белками, жирами углеводами, минеральными веществами, которые проникают в клетку в растворенном виде через оболочку путем осмоса(процесс диффу-зии через полупроницаемую оболочку). Белки и сложные углеводы усваиваются микробами только после расщепления их на простые составные части ферментами, выделенными микроорганизмами.

    Для осуществления нормального питания микробов необходимо определенное соотношение концентрации веществ как внутри клет-ки микроорганизма, так и в окружающей среде. Наиболее благопри-ятная концентрация - содержание 0,5 % хлористого натрия в окружающей среде. В среде, где концентрация растворимых веществ на много выше (2-10 %), чем в клетке, вода из клетки переходит в окружающую среду, происходит обезвоживание и сморщивание цитоплазмы, что приводит к гибели микроба. Это свойство микроорганизмов используют при консервировании продуктов сахаром (варенье) или солью (посол мяса, рыбы).

    Дыхание микробов. Дыхание микробам необходимо для по-лучения энергии, обеспечивающей все жизненные процессы. По спо-собу дыхания микробы делят на аэробы, нуждающиеся в кислороде воздуха (плесневые грибы, уксуснокислые бактерии); анаэробы, жи-вущие и развивающиеся при отсутствии кислорода (ботулинус, маслянокислые бактерии), условные (факультативные) анаэробы, развивающиеся как в присутствии кислорода, так и без него (молочно-кислые бактерии, дрожжи).

    Биология дрожжей

    5. Морфология дрожжей

    Макроморфологические признаки очень изменчивы и сильно зависят от состава среды и условий культивирования, поэтому они имеют весьма ограниченное значение в систематике дрожжей. . Дрожжевые культуры, растущие на плотных средах…

    Вегетативное размножение кустарников

    1.2 Способы размножения кустарников

    Кустарники размножаются черенками, семенами, отводками. Семенное размножение большинства хвойных зачастую затруднено ввиду низкой доброкачественности и длительной всхожести семян, а также медленного роста сеянцев…

    Вегетативное размножение хвойных растений

    1.2 Способы размножения хвойных растений

    Семенное размножение большинства хвойных зачастую затруднено ввиду низкой доброкачественности и длительной всхожести семян, а также медленного роста сеянцев…

    Генетически модифицированные организмы. Принципы получения, применение

    1.2.1 Способы получения ГМ микроорганизмов

    Способность организмов синтезировать те или иные биомолекулы, в первую очередь белки, закодирована в их геноме. Поэтому достаточно «добавить» нужный ген, взятый из другого организма, в бактерию…

    Микробиология

    2. Энергетический обмен микробов. Способы получения энергии — брожение, дыхание. Типы дыхания бактерий

    Жизненные функции микроорганизмов: питание, дыхание, рост и размножение — изучает физиология. В основе физиологических функций лежит непрерывный обмен веществ (метаболизм). Сущность обмена веществ составляют два противоположных…

    Микробиология питьевой воды

    1.1 Закономерности количественного и качественного содержания микроорганизмов в пресных водоемах от различных факторов

    Микрофлора различных водоемов содержит достаточное количество питательных веществ, что является главным фактором, способствующим развитию микроорганизмов. Чем богаче он, органическими веществами…

    Морфология внутреннего строения рыб

    2.8 Половая система и способы размножения

    Способы размножения рыб различны. Некоторые живородящие — из тела матери выходит активная молодь. Остальные — яйцекладущие, т.е. мечут икру, оплодотворяемую во внешней среде. Репродуктивное поведение некоторых рыб весьма своеобразно…

    Морфология и классификация прокариотов и эукариотов. Генетика микроорганизмов

    4. Морфология и классификация эукариотов (микроскопических грибов и дрожжей)

    Эукариоты (мицелиальные и дрожжевые грибы). Грибы. Общая характеристика. Грибы (Мусоtа) — обширная и разнообразная группа растительных организмов. Они не содержат хлорофилла…

    1.

    Перенос генетического материала у актиномицетов

    Перенос генетического материала и генетическое картирование у актиномицетов

    2. Генетическое картирование актиномицетов

    Генетика актиномицетов исследована достаточно хорошо. Для наиболее изученных видов еще с конца 50-х гг. составлялись на основании конъюгационных скрещиваний подробные генетические карты с множеством нанесенных на них маркеров…

    Плесневые грибы

    1. Способы размножения плесневых грибов.

    2.2. Классификация и морфология бактерий

    Способы образования и размножения спор. Значение бесполого спорообразования для идентификации рода грибов

    Размножение происходит путем деления, идущего в поперечном направлении. При делении бактерия распадается на две равные или неравные по величине части. Образовавшиеся две клетки рассматриваются как материнская и дочерняя…

    Размножение — одно из фундаментальных свойств живого. Способы и формы размножения организмов

    Раздел 2. Основные способы и формы размножения

    Процесс размножения исключительно сложен и связан не только с передачей генетической информации от родителей к потомству, но и с анатомическими и физиологическими свойствами организмов, с их поведением, гормональным контролем…

    Роль микроорганизмов в круговороте химических элементов в природе

    6. Роль микроорганизмов в круговороте фосфора. Различные типы жизни бактерий, основанные на использовании соединений фосфора

    Круговорот фосфора несколько отличается от круговорота остальных элементов. Освобождение фосфора из органических соединений происходит в результате процессов гниения. Однако, до сих пор не обнаружены микроорганизмы…

    Способы размножения у различных микроорганизмов, сущность и химизм их дыхания

    2. Характеристика аэробных и анаэробных микроорганизмов. Сущность и химизм дыхания у микроорганизмов

    Потребность в энергии обеспечивается процессами энергетического обмена, сущность которых заключается в окислении органических веществ, сопровождаемом выделением энергии…

    Углеводородокисляющие микроорганизмы – перспективные объекты экологической биотехнологии

    1.3 Трансформации, осуществляемые спорами грибов и актиномицетов

    Трансформации, осуществляемые спорами, заслуживают специального внимания. Они обладают рядом удобств как технологические процессы. Неожиданно высокая энзиматическая активность, которую демонстрируют споры…

    2.1. Систематика и номенклатура микробов

    Мир микробов можно разделить на клеточные и неклеточные формы. Клеточные формы микробов представлены бактериями, грибами и простейшими. Их можно называть микроорганизмами. Неклеточные формы представлены вирусами, вироидами и прионами.

    Новая классификация клеточных микробов включает следующие таксономические единицы: домены, царства, типы, классы, порядки, семейства, роды, виды. В основу классификации микроорганизмов положены их генетическое родство, а также морфологические, физиологические, антигенные и молекулярнобиологические свойства.

    Вирусы нередко рассматриваются не как организмы, а как автономные генетические структуры, поэтому они будут рассмотрены отдельно.

    Клеточные формы микробов разделены на три домена. Домены Bacteria и Archaebacteria включают микробы с прокариотическим типом строения клетки. Представители домена Eukarya являются эукариотами. Он состоит из 4 царств:

    Царства грибов (Fungi, Eumycota);

    царства простейших (Protozoa);

    царства Chromista (хромовики);

    Микробов с неуточненным таксономическим положением (Microspora, микроспоридии).

    Различия в организации прокариотической и эукариотической клеток представлены в табл. 2.1.

    Таблица 2.1. Признаки прокариотической и эукариотической клетки

    2.2. Классификация и морфология бактерий

    Термин «бактерия» происходит от слова bacterion, что означает палочка. Бактерии относятся к прокариотам. Их разделяют на два домена: Bacteria и Archaebacteria. Бактерии, входящие в домен Archaebacteria, представляют одну из древнейших форм жизни. Они имеют особенности строения клеточной стенки (у них отсутствует пептидогликан) и рибосомальной РНК. Среди них отсутствуют возбудители инфекционных заболеваний.

    Внутри домена бактерии подразделяются на следующие таксономические категории: класс, тип, порядок, семейство, род, вид. Одной из основных таксономических категорий является вид (species). Вид - это совокупность особей, имеющих единое происхождение и генотип, объединенные по близким свойствам, отличающим их от других представителей рода. Название вида соответствует бинарной номенклатуре, т.е. состоит из двух слов. Например, возбудитель дифтерии пишется как Corynebacterium diphtheriae. Первое слово - название рода и пишется с прописной буквы, второе слово обозначает вид и пишется со строчной буквы.

    При повторном упоминании вида родовое название сокращается до начальной буквы, например C. diphtheriae.

    Совокупность однородных микроорганизмов, выделенных на питательной среде, характеризующихся сходными морфологическими, тинкториальными (отношение к красителям), культуральными, биохимическими и антигенными свойствами, называется чистой культурой. Чистая культура микроорганизмов, выделенных из определенного источника и отличающихся от других представителей вида, называется штаммом. Близким к понятию «штамм» является понятие «клон». Клон представляет собой совокупность потомков, выращенных из единственной микробной клетки.

    Для обозначения некоторых совокупностей микроорганизмов, отличающихся по тем или иным свойствам, употребляется суффикс «вар» (разновидность), поэтому микроорганизмы в зависимости от характера различий обозначают как морфовары (отличие по морфологии), резистентовары (отличие по устойчивости, например, к антибиотикам), серовары (отличие по антигенам), фаговары (отличие по чувствительности к бактериофагам), биовары (отличие по биологическим свойствам), хемовары (отличие по биохимическим свойствам) и т.д.

    Раньше основу классификации бактерий составляла особенность строения клеточной стенки. Подразделение бактерий по особенностям строения клеточной стенки связано с возможной вариабельностью их окраски в тот или иной цвет по методу Грама. Согласно этому методу, предложенному в 1884 г. датским ученым Х. Грамом, в зависимости от результатов окраски бактерии делятся на грамположительные, окрашиваемые в сине-фиолетовый цвет, и грамотрицательные, окрашиваемые в красный цвет.

    В настоящее время основу классификации составляет степень генетического родства, основанная на изучении строения генома рибосомных РНК (рРНК) (см. главу 5), определении процентного содержания в геноме гуанинцитозиновых пар (ГЦ-пары), построении рестрикционной карты генома, изучении степени гибридизации. Также учитываются и фенотипические показатели: отношение к окраске по Граму, морфологические, культуральные и биохимические свойства, антигенная структура.

    Домен Bacteria включает 23 типа, из которых медицинское значение имеют нижеизложенные.

    Большинство грамотрицательных бактерий объединены в тип Proteobacteria (по имени греческого бога Proteus, способного принимать различные облики). Тип Proteobacteria подразделен на 5 классов:

    Класс Alphaproteobacteria (роды Rickettsia, Orientia, Erlichia, Bartonella, Brucella);

    класс Betaproteobacteria (роды Вordetellа, Burholderia, Neisseria, Spirillum);

    Класс Gammaproteobacteria (представители семейства Enterobacteriaceae, роды Francisella, Legionella, Coxiella, Pseudomonas, Vibrio);

    Класс Deltaproteobacteria (род Bilophila);

    Класс Epsilonproteobacteria (роды Campilobacter, Helicobacter). Грамотрицательные бактерии входят также в следующие типы:

    тип Chlamydiae (роды Chlamydia, Chlamydophila), тип Spirochaetes (роды Spirocheta, Borrelia, Treponema, Leptospira); тип Bacteroides (роды Bacteroides, Prevotella, Porphyromonas).

    Грамположительные бактерии входят в следующие типы:

    Тип Firmicutes включает класс Clostridium (роды Clostridium, Peptococcus), класс Bacilli (Listeria, Staphylococcus, Lactobacillus, Streptococcus) и класс Mollicutes (роды Mycoplasma, Ureaplasma), которые являются бактериями, не имеющими клеточную стенку;

    тип Actinobacteria (роды Actinomyces, Micrococcus, Corynebacterium, Mycobacterium, Gardnerella, Bifidobacterium, Propionibacterium, Mobiluncus).

    2.2.1. Морфологические формы бактерий

    Различают несколько основных форм бактерий: кокковидные, палочковидные, извитые и ветвящиеся (рис. 2.1).

    Сферические формы, или кокки - шаровидные бактерии размером 0,5-1 мкм, которые по взаимному расположению делятся на микрококки, диплококки, стрептококки, тетракокки, сарцины и стафилококки.

    Микрококки (от греч. micros - малый) - отдельно расположенные клетки.

    Диплококки (от греч. diploos - двойной), или парные кокки, располагаются парами (пневмококк, гонококк, менингококк), так как клетки после деления не расходятся. Пневмококк (возбудитель пневмонии) имеет с противоположных сторон ланцетовидную форму, а гонококк (возбудитель гонореи) и менингококк (возбу-

    Рис. 2.1. Формы бактерий

    дитель эпидемического менингита) имеют форму кофейных зерен, обращенных вогнутой поверхностью друг к другу.

    Стрептококки (от греч. streptos - цепочка) - клетки округлой или вытянутой формы, составляющие цепочку вследствие деления клеток в одной плоскости и сохранения связи между ними в месте деления.

    Сарцины (от лат. sarcina - связка, тюк) располагаются в виде пакетов из 8 кокков и более, так как они образуются при делении клетки в трех взаимно перпендикулярных плоскостях.

    Стафилококки (от греч. staphyle - виноградная гроздь) - кокки, расположенные в виде грозди винограда в результате деления в разных плоскостях.

    Палочковидные бактерии различаются по размерам, форме концов клетки и взаимному расположению клеток. Длина клеток 1-10 мкм, толщина 0,5-2 мкм. Палочки могут быть правильной

    (кишечная палочка и др.) и неправильной булавовидной (коринебактерии и др.) формы. К наиболее мелким палочковидным бактериям относятся риккетсии.

    Концы палочек могут быть как бы обрезанными (сибиреязвенная бацилла), закругленными (кишечная палочка), заостренными (фузобактерии) или в виде утолщения. В последнем случае палочка похожа на булаву (коринебактерии дифтерии).

    Слегка изогнутые палочки называются вибрионами (холерный вибрион). Большинство палочковидных бактерий располагается беспорядочно, так как после деления клетки расходятся. Если после деления клетки остаются связанными общими фрагментами клеточной стенки и не расходятся, то они располагаются под углом друг к другу (коринебактерии дифтерии) или образуют цепочку (сибиреязвенная бацилла).

    Извитые формы - спиралевидные бактерии, которые бывают двух видов: спириллы и спирохеты. Спириллы имеют вид штопорообразно извитых клеток с крупными завитками. К патогенным спириллам относятся возбудитель содоку (болезнь укуса крыс), а также кампилобактерии и хеликобактерии, имеющие изгибы, напоминающие крылья летящей чайки. Спирохеты представляют тонкие длинные извитые бактерии, отличающиеся от спирилл более мелкими завитками и характером движения. Особенность их строения описана ниже.

    Ветвящиеся - палочковидные бактерии, которые могут иметь разветвление в форме латинской буквы Y, встречающиеся у бифидобактерий, также быть представленными в виде нитевидных разветвленных клеток, способных переплетаться, образуя мицелий, что наблюдается у актиномицет.

    2.2.2. Структура бактериальной клетки

    Структура бактерий хорошо изучена с помощью электронной микроскопии целых клеток и их ультратонких срезов, а также других методов. Бактериальную клетку окружает оболочка, состоящая из клеточной стенки и цитоплазматической мембраны. Под оболочкой находится протоплазма, состоящая из цитоплазмы с включениями и наследственного аппарата - аналога ядра, называемого нуклеоидом (рис. 2.2). Имеются дополнительные структуры: капсула, микрокапсула, слизь, жгутики, пили. Некоторые бактерии в неблагоприятных условиях способны образовывать споры.

    Рис. 2.2. Структура бактериальной клетки: 1 - капсула; 2 - клеточная стенка; 3 - цитоплазматическая мембрана; 4 - мезосомы; 5 - нуклеоид; 6 - плазмида; 7 - рибосомы; 8 - включения; 9 - жгутик; 10 - пили (ворсинки)

    Клеточная стенка - прочная, упругая структура, придающая бактерии определенную форму и вместе с подлежащей цитоплазматической мембраной сдерживающая высокое осмотическое давление в бактериальной клетке. Она участвует в процессе деления клетки и транспорте метаболитов, имеет рецепторы для бактериофагов, бактериоцинов и различных веществ. Наиболее толстая клеточная стенка у грамположительных бактерий (рис. 2.3). Так, если толщина клеточной стенки грамотрицательных бактерий около 15-20 нм, то у грамположительных она может достигать 50 нм и более.

    Основу клеточной стенки бактерий составляет пептидогликан. Пептидогликан является полимером. Он представлен параллельными полисахаридными гликановыми цепями, состоящими из повторяющихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединенных гликозидной связью. Эту связь разрывает лизоцим, являющийся ацетилмурамидазой.

    К N-ацетилмурамовой кислоте ковалентными связями присоединен тетрапептид. Тетрапептид состоит из L-аланина, который связан с N-ацетилмурамовой кислотой; D-глутамина, который у грамположительных бактерий соединен с L-лизином, а у грамотри-

    Рис. 2.3. Схема архитектоники клеточной стенки бактерий

    цательных бактерий - с диаминопимелиновой кислотой (ДАП), которая представляет собой предшественник лизина в процессе бактериального биосинтеза аминокислот и является уникальным соединением, присутствующим только у бактерий; 4-й аминокислотой является D-аланин (рис. 2.4).

    В клеточной стенке грамположительных бактерий содержится небольшое количество полисахаридов, липидов и белков. Основным компонентом клеточной стенки этих бактерий является многослойный пептидогликан (муреин, мукопептид), составляющий 40-90% массы клеточной стенки. Тетрапептиды разных слоев пептидогликана у грамположительных бактерий соединены друг с другом полипептидными цепочками из 5 остатков глицина (пентаглицина), что придает пептидогликану жесткую геометрическую структуру (рис. 2.4, б). С пептидогликаном ктеточной стенки грамположительных бактерий ковалентно связаны тейхоевые кислоты (от греч. tekhos - стенка), молекулы которых представляют собой цепи из 8-50 остатков глицерола и рибитола, соединенных фосфатными мостиками. Форму и прочность бактериям придает жесткая волокнистая структура многослойного, с поперечными пептидными сшивками пептидогликана.

    Рис. 2.4. Структура пептидогликана: а - грамотрицательные бактерии; б - грамположительные бактерии

    Способность грамположительных бактерий при окраске по Граму удерживать генциановый фиолетовый в комплексе с йодом (сине-фиолетовая окраска бактерий) связана со свойством многослойного пептидогликана взаимодействовать с красителем. Кроме этого последующая обработка мазка бактерий спиртом вызывает сужение пор в пептидогликане и тем самым задерживает краситель в клеточной стенке.

    Грамотрицательные бактерии после воздействия спиртом утрачивают краситель, что обусловлено меньшим количеством пептидогликана (5-10% массы клеточной стенки); они обесцвечиваются спиртом, и при обработке фуксином или сафранином приобретают красный цвет. Это связано с особенностями строения клеточной стенки. Пептидогликан в клеточной стенке грамотрицательных бактерий представлен 1-2 слоями. Тетрапептиды слоев соединены между собой прямой пептидной связью между аминогруппой ДАП одного тетрапептида и карбоксильной группой D-аланина тетрапептида другого слоя (рис. 2.4, а). Кнаружи от пептидогликана расположен слой липопротеина, соединенный с пептидогликаном через ДАП. За ним следует наружная мембрана клеточной стенки.

    Наружная мембрана является мозаичной структурой, представленной липополисахаридами (ЛПС), фосфолипидами и белками. Внутренний слой ее представлен фосфолипидами, а в наружном слое расположен ЛПС (рис. 2.5). Таким образом, наружная мем-

    Рис. 2.5. Структура липополисахарида

    брана асимметрична. ЛПС наружной мембраны состоит из трех фрагментов:

    Липида А - консервативной структуры, практически одинаковой у грамотрицательных бактерий. Липид А состоит из фосфорилированных глюкозоаминовых дисахаридных единиц, к которым прикреплены длинные цепочки жирных кислот (см. рис. 2.5);

    Ядра, или стержневой, коровой части (от лат. core - ядро), относительно консервативной олигосахаридной структуры;

    Высоковариабельной О-специфической цепи полисахарида, образованной повторяющимися идентичными олигосахаридными последовательностями.

    ЛПС заякорен в наружной мембране липидом А, обусловливающим токсичность ЛПС и отождествляемым поэтому с эндотоксином. Разрушение бактерий антибиотиками приводит к освобождению большого количества эндотоксина, что может вызвать у больного эндотоксический шок. От липида А отходит ядро, или стержневая часть ЛПС. Наиболее постоянной частью ядра ЛПС является кетодезоксиоктоновая кислота. О-специфическая полисахаридная цепь, отходящая от стержневой части молекулы ЛПС,

    состоящая из повторяющихся олигосахаридных единиц, обусловливает серогруппу, серовар (разновидность бактерий, выявляемая с помощью иммунной сыворотки) определенного штамма бактерий. Таким образом, с понятием ЛПС связаны представления об О-антигене, по которому можно дифференцировать бактерии. Генетические изменения могут привести к дефектам, укорочению ЛПС бактерий и появлению в результате этого шероховатых колоний R-форм, теряющих О-антигенную специфичность.

    Не все грамотрицательные бактерии имеют полноценную О-специфическую полисахаридную цепь, состоящую из повторяющихся олигосахаридных единиц. В частности, бактерии рода Neisseria имеют короткий гликолипид, который называется липоолигосахаридом (ЛОС). Он сравним с R-формой, потерявшей О-антигенную специфичность, наблюдаемой у мутантных шероховатых штаммов E. coli. Структура ЛОС напоминает структуру гликосфинголипида цитоплазматической мембраны человека, поэтому ЛОС мимикрирует микроб, позволяя ему избегать иммунного ответа хозяина.

    Белки матрикса наружной мембраны пронизывают ее таким образом, что молекулы белка, называемые поринами, окаймляют гидрофильные поры, через которые проходят вода и мелкие гидрофильные молекулы с относительной массой до 700 Д.

    Между наружной и цитоплазматической мембраной находится периплазматическое пространство, или периплазма, содержащая ферменты (протеазы, липазы, фосфатазы, нуклеазы, β-лактамазы), а также компоненты транспортных систем.

    При нарушении синтеза клеточной стенки бактерий под влиянием лизоцима, пенициллина, защитных факторов организма и других соединений образуются клетки с измененной (часто шаровидной) формой: протопласты - бактерии, полностью лишенные клеточной стенки; сферопласты - бактерии с частично сохранившейся клеточной стенкой. После удаления ингибитора клеточной стенки такие измененные бактерии могут реверсировать, т.е. приобретать полноценную клеточную стенку и восстанавливать исходную форму.

    Бактерии сфероили протопластного типа, утратившие способность к синтезу пептидогликана под влиянием антибиотиков или других факторов и способные размножаться, называются L-формами (от названия Института им. Д. Листера, где они впер-

    вые были изучены). L-формы могут возникать и в результате мутаций. Они представляют собой осмотически чувствительные, шаровидные, колбовидные клетки различной величины, в том числе и проходящие через бактериальные фильтры. Некоторые L-формы (нестабильные) при удалении фактора, приведшего к изменениям бактерий, могут реверсировать, возвращаясь в исходную бактериальную клетку. L-формы могут образовывать многие возбудители инфекционных болезней.

    Цитоплазматическая мембрана при электронной микроскопии ультратонких срезов представляет собой трехслойную мембрану (2 темных слоя толщиной по 2,5 нм каждый разделены светлым - промежуточным). По структуре она похожа на плазмолемму клеток животных и состоит из двойного слоя липидов, главным образом фосфолипидов, с внедренными поверхностными, а также интегральными белками, как бы пронизывающими насквозь структуру мембраны. Некоторые из них являются пермеазами, участвующими в транспорте веществ. В отличие от эукариотических клеток, в цитоплазматической мембране бактериальной клетки отсутствуют стеролы (за исключением микоплазм).

    Цитоплазматическая мембрана является динамической структурой с подвижными компонентами, поэтому ее представляют как мобильную текучую структуру. Она окружает наружную часть цитоплазмы бактерий и участвует в регуляции осмотического давления, транспорте веществ и энергетическом метаболизме клетки (за счет ферментов цепи переноса электронов, аденозинтрифосфатазы - АТФазы и др.). При избыточном росте (по сравнению с ростом клеточной стенки) цитоплазматическая мембрана образует инвагинаты - впячивания в виде сложно закрученных мембранных структур, называемые мезосомами. Менее сложно закрученные структуры называются внутрицитоплазматическими мембранами. Роль мезосом и внутрицитоплазматических мембран до конца не выяснена. Предполагают даже, что они являются артефактом, возникающим после приготовления (фиксации) препарата для электронной микроскопии. Тем не менее считают, что производные цитоплазматической мембраны участвуют в делении клетки, обеспечивая энергией синтез клеточной стенки, принимают участие в секреции веществ, спорообразовании, т.е. в процессах с высокой затратой энергии. Цитоплазма занимает основной объем бактери-

    альной клетки и состоит из растворимых белков, рибонуклеиновых кислот, включений и многочисленных мелких гранул - рибосом, ответственных за синтез (трансляцию) белков.

    Рибосомы бактерий имеют размер около 20 нм и коэффициент седиментации 70S, в отличие от 80S-рибосом, характерных для эукариотических клеток. Поэтому некоторые антибиотики, связываясь с рибосомами бактерий, подавляют синтез бактериального белка, не влияя на синтез белка эукариотических клеток. Рибосомы бактерий могут диссоциировать на две субъединицы: 50S и 30S. рРНК - консервативные элементы бактерий («молекулярные часы» эволюции). 16S-рРНК входит в состав малой субъединицы рибосом, а 23S-рРНК - в состав большой субъединицы рибосом. Изучение 16S рРНК является основой геносистематики, позволяя оценить степень родства организмов.

    В цитоплазме имеются различные включения в виде гранул гликогена, полисахаридов, β-оксимасляной кислоты и полифосфатов (волютин). Они накапливаются при избытке питательных веществ в окружающей среде и выполняют роль запасных веществ для питания и энергетических потребностей.

    Волютин обладает сродством к основным красителям и легко выявляется с помощью специальных методов окраски (например, по Нейссеру) в виде метахроматических гранул. Толуидиновым синим или метиленовым голубым волютин окрашивается в краснофиолетовый цвет, а цитоплазма бактерии - в синий. Характерное расположение гранул волютина выявляется у дифтерийной палочки в виде интенсивно прокрашивающихся полюсов клетки. Метахроматическое окрашивание волютина связано с высоким содержанием полимеризованного неорганического полифосфата. При электронной микроскопии они имеют вид электронноплотных гранул размером 0,1-1 мкм.

    Нуклеоид - эквивалент ядра у бактерий. Он расположен в центральной зоне бактерий в виде двунитевой ДНК, плотно уложенной наподобие клубка. Нуклеоид бактерий, в отличие от эукариот, не имеет ядерной оболочки, ядрышка и основных белков (гистонов). У большинства бактерий содержится одна хромосома, представленная замкнутой в кольцо молекулой ДНК. Но у некоторых бактерий имеются две хромосомы кольцевой формы (V. cholerae) и линейные хромосомы (см. раздел 5.1.1). Нуклеоид выявляется в световом микроскопе после окраски специфическими для ДНК

    методами: по Фельгену или по Романовскому-Гимзе. На электронограммах ультратонких срезов бактерий нуклеоид имеет вид светлых зон с фибриллярными, нитевидными структурами ДНК, связанной определенными участками с цитоплазматической мембраной или мезосомой, участвующими в репликации хромосомы.

    Кроме нуклеоида, в бактериальной клетке имеются внехромосомные факторы наследственности - плазмиды (см. раздел 5.1.2), представляющие собой ковалентно замкнутые кольца ДНК.

    Капсула, микрокапсула, слизь. Капсула - слизистая структура толщиной более 0,2 мкм, прочно связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние границы. Капсула различима в мазках-отпечатках из патологического материала. В чистых культурах бактерий капсула образуется реже. Она выявляется при специальных методах окраски мазка по Бурри- Гинсу, создающих негативное контрастирование веществ капсулы: тушь создает темный фон вокруг капсулы. Капсула состоит из полисахаридов (экзополисахаридов), иногда из полипептидов, например у сибиреязвенной бациллы она состоит из полимеров D-глутаминовой кислоты. Капсула гидрофильна, включает большое количество воды. Она препятствует фагоцитозу бактерий. Капсула антигенна: антитела к капсуле вызывают ее увеличение (реакция набухания капсулы).

    Многие бактерии образуют микрокапсулу - слизистое образование толщиной менее 0,2 мкм, выявляемое лишь при электронной микроскопии.

    От капсулы следует отличать слизь - мукоидные экзополисахариды, не имеющие четких внешних границ. Слизь растворима в воде.

    Мукоидные экзополисахариды характерны для мукоидных штаммов синегнойной палочки, часто встречающихся в мокроте больных кистозным фиброзом. Бактериальные экзополисахариды участвуют в адгезии (прилипании к субстратам); их еще называют гликокаликсом.

    Капсула и слизь предохраняют бактерии от повреждений, высыхания, так как, являясь гидрофильными, хорошо связывают воду, препятствуют действию защитных факторов макроорганизма и бактериофагов.

    Жгутики бактерий определяют подвижность бактериальной клетки. Жгутики представляют собой тонкие нити, берущие на-

    чало от цитоплазматической мембраны, имеют большую длину, чем сама клетка. Толщина жгутиков 12-20 нм, длина 3-15 мкм. Они состоят из трех частей: спиралевидной нити, крюка и базального тельца, содержащего стержень со специальными дисками (одна пара дисков у грамположительных и две пары у грамотрицательных бактерий). Дисками жгутики прикреплены к цитоплазматической мембране и клеточной стенке. При этом создается эффект электромотора со стержнем - ротором, вращающим жгутик. В качестве источника энергии используется разность протонных потенциалов на цитоплазматической мембране. Механизм вращения обеспечивает протонная АТФ-синтетаза. Скорость вращения жгутика может достигать 100 об/с. При наличии у бактерии нескольких жгутиков они начинают синхронно вращаться, сплетаясь в единый пучок, образующий своеобразный пропеллер.

    Жгутики состоят из белка - флагеллина (flagellum - жгутик), являющегося антигеном - так называемый Н-антиген. Субъединицы флагеллина закручены в виде спирали.

    Число жгутиков у бактерий разных видов варьирует от одного (монотрих) у холерного вибриона до десятка и сотен, отходящих по периметру бактерии (перитрих), у кишечной палочки, протея и др. Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.

    Жгутики выявляют с помощью электронной микроскопии препаратов, напыленных тяжелыми металлами, или в световом микроскопе после обработки специальными методами, основанными на протравливании и адсорбции различных веществ, приводящих к увеличению толщины жгутиков (например, после серебрения).

    Ворсинки, или пили (фимбрии) - нитевидные образования, более тонкие и короткие (3-10 нм * 0,3-10 мкм), чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина. Известно несколько типов пилей. Пили общего типа отвечают за прикрепления к субстрату, питание и водно-солевой обмен. Они многочисленны - несколько сотен на клетку. Половые пили (1-3 на клетку) создают контакт между клетками, осуществляя между ними передачу генетической информации путем конъюгации (см. главу 5). Особый интерес представляют пили IV типа, у которых концы обладают гидрофобностью, в результате чего они закручиваются, эти пили называют еще кудряшками. Располага-

    ются они по полюсам клетки. Эти пили встречаются у патогенных бактерий. Они обладают антигенными свойствами, осуществляют контакт бактерии с клеткой-хозяином, участвуют в образовании биопленки (см. главу 3). Многие пили являются рецепторами для бактериофагов.

    Споры - своеобразная форма покоящихся бактерий с грамположительным типом строения клеточной стенки. Спорообразующие бактерии рода Bacillus, у которых размер споры не превышает диаметр клетки, называются бациллами. Спорообразующие бактерии, у которых размер споры превышает диаметр клетки, отчего они принимают форму веретена, называются клостридиями, например бактерии рода Clostridium (от лат. Clostridium - веретено). Споры кислотоустойчивы, поэтому окрашиваются по методу Ауески или по методу Циля-Нельсена в красный, а вегетативная клетка - в синий цвет.

    Спорообразование, форма и расположение спор в клетке (вегетативной) являются видовым свойством бактерий, что позволяет отличать их друг от друга. Форма спор бывает овальной и шаровидной, расположение в клетке - терминальное, т.е. на конце палочки (у возбудителя столбняка), субтерминальное - ближе к концу палочки (у возбудителей ботулизма, газовой гангрены) и центральное (у сибиреязвенной бациллы).

    Процесс спорообразования (споруляция) проходит ряд стадий, в течение которых часть цитоплазмы и хромосома бактериальной вегетативной клетки отделяются, окружаясь врастающей цитоплазматической мембраной, - образуется проспора.

    В протопласте проспоры находятся нуклеоид, белоксинтезирующая система и система получения энергии, основанная на гликолизе. Цитохромы отсутствуют даже у аэробов. Не содержится АТФ, энергия для прорастания сохраняется в форме 3-глицеринфосфата.

    Проспору окружают две цитоплазматические мембраны. Слой, окружающий внутреннюю мембрану споры, называется стенкой споры, он состоит из пептидогликана и является главным источником клеточной стенки при прорастании споры.

    Между наружной мембраной и стенкой споры формируется толстый слой, состоящий из пептидогликана, имеющего много сшивок, - кортекс.

    Кнаружи от внешней цитоплазматической мембраны расположена оболочка споры, состоящая из кератиноподобных белков, со-

    держащих множественные внутримолекулярные дисульфидные связи. Эта оболочка обеспечивает резистентность к химическим агентам. Споры некоторых бактерий имеют дополнительный покров - экзоспориум липопротеиновой природы. Таким образом формируется многослойная плохо проницаемая оболочка.

    Спорообразование сопровождается интенсивным потреблением проспорой, а затем и формирующейся оболочкой споры дипиколиновой кислоты и ионов кальция. Спора приобретает термоустойчивость, которую связывают с наличием в ней дипиколината кальция.

    Спора долго может сохраняться из-за наличия многослойной оболочки, дипиколината кальция, низкого содержания воды и вялых процессов метаболизма. В почве, например, возбудители сибирской язвы и столбняка могут сохраняться десятки лет.

    В благоприятных условиях споры прорастают, проходя три последовательные стадии: активации, инициации, вырастания. При этом из одной споры образуется одна бактерия. Активация - это готовность к прорастанию. При температуре 60-80 °С спора активируется для прорастания. Инициация прорастания длится несколько минут. Стадия вырастания характеризуется быстрым ростом, сопровождающимся разрушением оболочки и выходом проростка.

    2.2.3. Особенности строения спирохет, риккетсий, хламидий, актиномицет и микоплазм

    Спирохеты - тонкие длинные извитые бактерии. Они состоят из наружной мембранной клеточной стенки, которая окружает цитоплазматический цилиндр. Поверх наружной мембраны располагается прозрачный чехол гликозаминогликановой природы. Под наружной мембранной клеточной стенки располагаются фибриллы, закручивающиеся вокруг цитоплазматического цилиндра, придавая бактериям винтообразную форму. Фибриллы прикреплены к концам клетки и направлены навстречу друг другу. Число и расположение фибрилл варьируют у разных видов. Фибриллы участвуют в передвижении спирохет, придавая клеткам вращательное, сгибательное и поступательное движение. При этом спирохеты образуют петли, завитки, изгибы, которые названы вторичными завитками. Спирохеты плохо воспринимают красители. Обычно их окрашивают по Романовскому-Гимзе или серебрением. В живом

    виде спирохеты исследуют с помощью фазово-контрастной или темнопольной микроскопии.

    Спирохеты представлены тремя родами, патогенными для человека: Treponema, Borrelia, Leptospira.

    Трепонемы (род Treponema) имеют вид тонких штопорообразно закрученных нитей с 8-12 равномерными мелкими завитками. Вокруг протопласта трепонем расположены 3-4 фибриллы (жгутики). В цитоплазме имеются цитоплазматические филаменты. Патогенными представителями являются Т. pallidum - возбудитель сифилиса, T. pertenue - возбудитель тропической болезни - фрамбезии. Имеются и сапрофиты - обитатели полости рта человека, ила водоемов.

    Боррелии (род Borrelia), в отличие от трепонем, более длинные, имеют по 3-8 крупных завитков и 7-20 фибрилл. К ним относятся возбудитель возвратного тифа (В. recurrentis) и возбудители болезни Лайма (В. burgdorferi) и других заболеваний.

    Лептоспиры (род Leptospira) имеют завитки неглубокие и частые в виде закрученной веревки. Концы этих спирохет изогнуты наподобие крючков с утолщениями на концах. Образуя вторичные завитки, они приобретают вид букв S или С; имеют две осевые фибриллы. Патогенный представитель L. interrogans вызывает лептоспироз при попадании в организм с водой или пищей, приводя к кровоизлияниям и желтухе.

    Риккетсии обладают независимым от клетки хозяина метаболизмом, однако, возможно, они получают от клетки хозяина макроэргические соединения для своего размножения. В мазках и тканях их окрашивают по Романовскому-Гимзе, по Маккиавелло- Здродовскому (риккетсии красного цвета, а инфицированные клетки - синего).

    У человека риккетсии вызывают эпидемический сыпной тиф (R. prowazekii), клещевой риккетсиоз (R. sibirica), пятнистую лихорадку Скалистых гор (R. rickettsii) и другие риккетсиозы.

    Строение их клеточной стенки напоминает таковую грамотрицательных бактерий, хотя имеются отличия. Она не содержит типичного пептидогликана: в его составе полностью отсутствует N-ацетилмурамовая кислота. В состав клеточной стенки входит двойная наружная мембрана, которая включает липополисахарид и белки. Несмотря на отсутствие пептидогликана, клеточная стенка хламидий обладает ригидностью. Цитоплазма клетки ограничена внутренней цитоплазматической мембраной.

    Основным методом выявления хламидий является окраска по Романовскому-Гимзе. Цвет окраски зависит от стадии жизненного цикла: элементарные тельца окашиваются в пурпурный цвет на фоне голубой цитоплазмы клетки, ретикулярные тельца - в голубой цвет.

    У человека хламидии вызывают поражения глаз (трахома, конъюнктивит), урогенитального тракта, легких и др.

    Актиномицеты - ветвящиеся, нитевидные или палочковидные грамположительные бактерии. Свое название (от греч. actis - луч, mykes - гриб) они получили в связи с образованием в пораженных тканях друз - гранул из плотно переплетенных нитей в виде

    лучей, отходящих от центра и заканчивающихся колбовидными утолщениями. Актиномицеты, как и грибы, образуют мицелий - нитевидные переплетающиеся клетки (гифы). Они формируют субстратный мицелий, образующийся в результате врастания клеток в питательную среду, и воздушный, растущий на поверхности среды. Актиномицеты могут делиться путем фрагментации мицелия на клетки, похожие на палочковидные и кокковидные бактерии. На воздушных гифах актиномицетов образуются споры, служащие для размножения. Споры актиномицетов обычно не термостойки.

    Общую филогенетическую ветвь с актиномицетами образуют так называемые нокардиоподобные (нокардиоформные) актиномицеты - собирательная группа палочковидных бактерий неправильной формы. Их отдельные представители образуют ветвящиеся формы. К ним относят бактерии родов Corynebacterium, Mycobacterium, Nocardia и др. Нокардиоподобные актиномицеты отличаются наличием в клеточной стенке сахаров арабинозы, галактозы, а также миколовых кислот и больших количеств жирных кислот. Миколовые кислоты и липиды клеточных стенок обусловливают кислотоустойчивость бактерий, в частности микобактерий туберкулеза и лепры (при окраске по Цилю-Нельсену они имеют красный цвет, а некислотоустойчивые бактерии и элементы ткани, мокроты - синий цвет).

    Патогенные актиномицеты вызывают актиномикоз, нокардии - нокардиоз, микобактерии - туберкулез и лепру, коринебактерии - дифтерию. Сапрофитные формы актиномицетов и нокардиоподобных актиномицетов широко распространены в почве, многие из них являются продуцентами антибиотиков.

    Микоплазмы - мелкие бактерии (0,15-1 мкм), окруженные только цитоплазматической мембраной, содержащей стеролы. Они относятся к классу Mollicutes. Из-за отсутствия клеточной стенки микоплазмы осмотически чувствительны. Имеют разнообразную форму: кокковидную, нитевидную, колбовидную. Эти формы видны при фазово-контрастной микроскопии чистых культур микоплазм. На плотной питательной среде микоплазмы образуют колонии, напоминающие яичницу-глазунью: центральная непрозрачная часть, погруженная в среду, и просвечивающая периферия в виде круга.

    Микоплазмы вызывают у человека атипичную пневмонию (Mycoplasma pneumoniae) и поражения мочеполового тракта

    (М. hominis и др.). Микоплазмы вызывают заболевания не только у животных, но и у растений. Достаточно широко распространены и непатогенные представители.

    2.3. Строение и классификация грибов

    Грибы относятся к домену Eukarya, царству Fungi (Mycota, Mycetes). Недавно грибы и простейшие были разделены на самостоятельные царства: царство Eumycota (настоящие грибы), царство Chromista и царство Protozoa. Некоторые микроорганизмы, ранее считавшиеся грибами или простейшими, были перемещены в новое царство Chromista (хромовики). Грибы - многоклеточные или одноклеточные нефотосинтезирующие (бесхлорофильные) эукариотические микроорганизмы с толстой клеточной стенкой. Они имеют ядро с ядерной оболочкой, цитоплазму с органеллами, цитоплазматическую мембрану и многослойную ригидную клеточную стенку, состоящую из нескольких типов полисахаридов (маннаны, глюканы, целлюлоза, хитин), а также белка, липидов и др. Некоторые грибы образуют капсулу. Цитоплазматическая мембрана содержит гликопротеины, фосфолипиды и эргостеролы (в отличие от холестерина - главного стерола тканей млекопитающих). Большинство грибов - облигатные или факультативные аэробы.

    Грибы широко распространены в природе, особенно в почве. Некоторые грибы содействуют производству хлеба, сыра, молочнокислых продуктов и алкоголя. Другие грибы продуцируют антимикробные антибиотики (например, пенициллин) и иммунодепрессивные лекарства (например, циклоспорин). Грибы используют генетики и молекулярные биологи для моделирования различных процессов. Фитопатогенные грибы наносят значительный ущерб сельскому хозяйству, вызывая грибковые болезни злаковых растений и зерна. Инфекции, вызываемые грибами, называются микозами. Различают гифальные и дрожжевые грибы.

    Гифальные (плесневые) грибы, или гифомицеты, состоят из тонких нитей толщиной 2-50 мкм, называемых гифами, которые сплетаются в грибницу или мицелий (плесень). Тело гриба называется талломом. Различают демациевые (пигментированные - коричневые или черные) и гиалиновые (непигментированные) гифомицеты. Гифы, врастающие в питательный субстрат, отвечают за питание гриба и называются вегетативными гифами. Гифы, ра-

    стущие над поверхностью субстрата, называются воздушными или репродуктивными гифами (отвечают за размножение). Колонии из-за воздушного мицелия имеют пушистый вид.

    Различают низшие и высшие грибы: гифы высших грибов разделены перегородками, или септами с отверстиями. Гифы низших грибов не имеют перегородок, представляя собой многоядерные клетки, называемые ценоцитными (от греч. koenos - единый, общий).

    Дрожжевые грибы (дрожжи) в основном представлены отдельными овальными клетками диаметром 3-15 мкм, а их колонии, в отличие от гифальных грибов, имеют компактный вид. По типу полового размножения они распределены среди высших грибов - аскомицет и базидиомицет. При бесполом размножении дрожжи образуют почки или делятся. Могут образовывать псевдогифы и ложный мицелий (псевдомицелий) в виде цепочек удлиненных клеток - «сарделек». Грибы, аналогичные дрожжам, но не имеющие полового способа размножения, называют дрожжеподобными. Они размножаются только бесполым способом - почкованием или делением. Понятия «дрожжеподобные грибы» часто идентифицируют с понятием «дрожжи».

    Многие грибы обладают диморфизмом - способностью к гифальному (мицелиальному) или дрожжеподобному росту в зависимости от условий культивирования. В инфицированном организме они растут в виде дрожжеподобных клеток (дрожжевая фаза), а на питательных средах образуют гифы и мицелий. Диморфизм связан с температурным фактором: при комнатной температуре образуется мицелий, а при 37 °С (при температуре тела человека) - дрожжеподобные клетки.

    Грибы размножаются половым или бесполым способом. Половое размножение грибов происходит с образованием гамет, половых спор и других половых форм. Половые формы называются телеоморфами.

    Бесполое размножение грибов происходит с образованием соответствующих форм, называемых анаморфами. Такое размножение происходит почкованием, фрагментацией гиф и бесполыми спорами. Эндогенные споры (спорангиоспоры) созревают внутри округлой структуры - спорангия. Экзогенные споры (конидии) формируются на кончиках плодоносящих гиф, так называемых конидиеносцах.

    Различают разнообразые конидии. Артроконидии (артроспоры), или таллоконидии, образуются при равномерном септировании и расчленении гиф, а бластоконидии образуются в результате почкования. Небольшие одноклеточные конидии называются микроконидиями, большие многоклеточные конидии - макроконидиями. К бесполым формам грибов относят также хламидоконидии, или хламидоспоры (толстостенные крупные покоящиеся клетки или комплекс мелких клеток).

    Различают совершенные и несовершенные грибы. Совершенные грибы имеют половой способ размножения; к ним относят зигомицеты (Zygomycota), аскомицеты (Ascomycota) и базидиомицеты (Basidiomycota). Несовершенные грибы имеют только бесполый способ размножения; к ним относят формальный условный тип/ группу грибов - дейтеромицеты (Deiteromycota).

    Зигомицеты относятся к низшим грибам (мицелий несептированный). Они включают представителей родов Mucor, Rhizopus, Rhizomucor, Absidia, Basidiobolus, Conidiobolus. Распространены в почве и воздухе. Могут вызывать зигомикоз (мукоромикоз) легких, головного мозга и других органов человека.

    При бесполом размножении зигомицет на плодоносящей гифе (спорангиеносце) образуется спорангий - шаровидное утолщение с оболочкой, содержащее многочисленные спорангиоспоры (рис. 2.6, 2.7). Половое размножение у зигомицетов происходит с помощью зигоспор.

    Аскомицеты (сумчатые грибы) имеют септированный мицелий (кроме одноклеточных дрожжей). Свое название они получили от основного органа плодоношения - сумки, или аска, содержащего 4 или 8 гаплоидных половых спор (аскоспор).

    К аскомицетам относятся отдельные представители (телеоморфы) родов Aspergillus и Penicillium. Большинство грибов родов Aspergillus, Penicillium являются анаморфами, т.е. размножаются только беспо-

    Рис. 2.6. Грибы рода Mucor (рис. А.С. Быкова)

    Рис. 2.7. Грибы рода Rhizopus. Развитие спорангия, спорангиоспор и ризоидов

    лым путем с помощью бесполых спор - конидий (рис. 2.8, 2.9) и должны быть отнесены по этому признаку к несовершенным грибам. У грибов рода Aspergillus на концах плодоносящих гиф, конидиеносцах, имеются утолщения - стеригмы, фиалиды, на которых образуются цепочки конидий («леечная плесень»).

    У грибов рода Penicillium (кистевик) плодоносящая гифа напоминает кисточку, так как из нее (на конидиеносце) образуются утолщения, разветвляющиеся на более мелкие структуры - стеригмы, фиалиды, на которых находятся цепочки конидий. Некоторые виды аспергилл могут вызывать аспергиллезы и афлатоксикозы, пенициллы могут вызывать пенициллиозы.

    Представителями аскомицетов являются телеоморфы родов Trichophyton, Microsporum, Histoplasma, Blastomyces, а также дрож-

    Рис. 2.8. Грибы рода Penicillium. Цепочки конидий отходят от фиалид

    Рис. 2.9. Грибы рода Aspergillus fumigatus. От фиалид отходят цепочки конидий

    Базидиомицеты включают шляпочные грибы. Они имеют септированный мицелий и образуют половые споры - базидиоспоры путем отшнуровывания от базидия - концевой клетки мицелия, гомологичной аску. К базидиомицетам относятся некоторые дрожжи, например телеоморфы Cryptococcus neoformans.

    Дейтеромицеты являются несовершенными грибами (Fungi imperfecti, анаморфные грибы, конидиальные грибы). Это условный, формальный таксон грибов, объединяющий грибы, не имеющие полового размножения. Недавно вместо термина «дейтеромицеты» предложен термин «митоспоровые грибы» - грибы, размножающиеся неполовыми спорами, т.е. путем митоза. При установлении факта полового размножения несовершенных грибов их переносят в один из известных типов - Ascomycota или Basidiomycota, присваивая название телеоморфной формы. Дейтеромицеты имеют септированный мицелий, размножаются только путем бесполого формирования конидий. К дейтеромицетам относятся несовершенные дрожжи (дрожжеподобные грибы), например некоторые грибы рода Candida, поражающие кожу, слизистые оболочки и внутренние органы (кандидоз). Они имеют овальную форму, диаметр 2-5 мкм, делятся почкованием, образуют псевдогифы (псевдомицелий) в виде цепочек из удлиненных клеток, иногда образуют гифы. Для Candida albicans характерно образование хламидоспор (рис. 2.10). К дейтеромицетам относят также другие грибы, не имеющие полового способа размножения, относящиеся к родам Epidermophyton, Coccidioides, Paracoccidioides, Sporothrix, Aspergillus, Phialophora, Fonsecaeа, Exophiala, Cladophialophora, Bipolaris, Exerohilum, Wangiella, Alrernaria и др.

    Рис. 2.10. Грибы рода Candida albicans (рис. А.С. Быкова)

    2.4. Строение и классификация простейших

    Простейшие относятся к домену Eukarya, царству животных (Animalia), подцарству Protozoa. Недавно предложено выделить простейшие в ранг царства Protozoa.

    Клетка простейших окружена мембраной (пелликулой) - аналогом цитоплазматической мембраны клеток животных. Она имеет ядро с ядерной оболочкой и ядрышком, цитоплазму, содержащую эндоплазматический ретикулум, митохондрии, лизосомы и рибосомы. Размеры простейших колеблются от 2 до 100 мкм. При окраске по Романовскому-Гимзе ядро простейших имеет красный, а цитоплазма - голубой цвет. Простейшие передвигаются с помощью жгутиков, ресничек или псевдоподий, некоторые из них имеют пищеварительные и сократительные (выделительные) вакуоли. Они могут питаться в результате фагоцитоза или образования особых структур. По типу питания они разделяются на гетеротрофы и аутотрофы. Многие простейшие (дизентерийная амеба, лямблии, трихомонады, лейшмании, балантидии) могут расти на питательных средах, содержащих нативные белки и аминокислоты. Для их культивирования используют также культуры клеток, куриные эмбрионы и лабораторных животных.

    Простейшие размножаются бесполым путем - двойным или множественным (шизогония) делением, а некоторые и половым путем (спорогония). Одни простейшие размножаются внеклеточно (лямблии), а другие - внутриклеточно (плазмодии, токсоплазма, лейшмании). Жизненный цикл простейших характеризуется стадийностью - образованием стадии трофозоита и стадии цисты. Цисты - покоящиеся стадии, устойчивые к изменению температуры и влажности. Кислотоустойчивостью отличаются цисты Sarcocystis, Cryptosporidium и Isospora.

    Ранее простейшие, вызывающие заболевания у человека, были представлены 4 типами 1 (Sarcomastigophora, Apicomplexa, Ciliophora, Microspora). Эти типы недавно реклассифицированы на большее количество, появились новые царства - Protozoa и Chromista (табл. 2.2). В новое царство Chromista (хромовики) вошли некоторые простейшие и грибы (бластоцисты, оомицеты и Rhinosporidium seeberi). Царство Protozoa включает амебы, жгутиконосцы, споровики и реснитчатые. Они подразделены на различные типы, среди которых различают амебы, жгутиконосцы, споровики и реснитчатые.

    Таблица 2.2. Представители царств Protozoa и Chromista, имеющие медицинское значение

    1 Тип Sarcomastigophora состоял из подтипов Sarcodina и Mastigophora. Подтип Sarcodina (саркодовые) включал дизентерийную амебу, а подтип Mastigophora (жгутиконосцы) - трипаносомы, лейшмании, лямблию и трихомонады. Тип Apicomplexa включал класс Sporozoa (споровики), куда входили плазмодии малярии, токсоплазма, криптоспоридии и др. Тип Ciliophora включает балантидии, а тип Microspora - микроспоридии.

    Окончание табл. 2.2

    К амебам относятся возбудитель амебиаза человека - амебной дизентерии (Entamoeba histolytica), свободно живущие и непатогенные амебы (кишечная амеба и др.). Амебы размножаются бинарно бесполым путем. Их жизненный цикл состоит из стадии трофозоита (растущая, подвижная клетка, малоустойчивая) и стадии цисты. Трофозоиты передвигаются с помощью псевдоподий, которые захватывают и погружают в цитоплазму питательные вещества. Из

    трофозоита образуется циста, устойчивая к внешним факторам. Попав в кишечник, она превращается в трофозоит.

    Жгутиконосцы характеризуются наличием жгутиков: у лейшманий один жгутик, у трихомонад 4 свободных жгутика и один жгутик, соединенный с короткой ундулирующей мембраной. Ими являются:

    Жгутиконосцы крови и тканей (лейшмании - возбудители лейшманиозов; трипаносомы - возбудители сонной болезни и болезни Шагаса);

    Жгутиконосцы кишечника (лямблия - возбудитель лямблиоза);

    Жгутиконосцы мочеполового тракта (трихомонада влагалищная - возбудитель трихомоноза).

    Реснитчатые представлены балантидиями, которые поражают толстую кишку человека (балантидиазная дизентерия). Балантидии имеют стадию трофозоита и цисты. Трофозоит подвижен, имеет многочисленные реснички, более тонкие и короткие, чем жгутики.

    2.5. Строение и классификация вирусов

    Вирусы - мельчайшие микробы, относящиеся к царству Virae (от лат. virus - яд). Они не имеют клеточного строения и состоят

    Структуру вирусов из-за их малых размеров изучают с помощью электронной микроскопии как вирионов, так и их ультратонких срезов. Размеры вирусов (вирионов) определяют напрямую с помощью электронной микроскопии или косвенно методом ультрафильтрации через фильтры с известным диаметром пор, методом ультрацентрифугирования. Размер вирусов колеблется от 15 до 400 нм (1 нм равен 1/1000 мкм): к маленьким вирусам, размер которых сходен с размером рибосом, относят парвовирусы и вирус полиомиелита, а к наиболее крупным - вирус натуральной оспы (350 нм). Вирусы отличаются по форме вирионов, которые имеют вид палочек (вирус табачной мозаики), пули (вирус бешенства), сферы (вирусы полиомиелита, ВИЧ), нити (филовирусы), сперматозоида (многие бактериофаги).

    Вирусы поражают воображение своим разнообразием структуры и свойств. В отличие от клеточных геномов, которые содержат однородную двунитевую ДНК, вирусные геномы чрезвычайно разнообразны. Различают ДНК- и РНК-содержащие вирусы, которые гаплоидны, т.е. имеют один набор генов. Диплоидный геном имеют только ретровирусы. Геном вирусов содержит от 6 до 200 генов и представлен различными видами нуклеиновых кислот: двунитевыми, однонитевыми, линейными, кольцевыми, фрагментированными.

    Среди однонитевых РНК-содержащих вирусов различают геномные плюс-нить РНК и минус-нить РНК (полярность РНК). Плюс-нить (позитивная нить) РНК этих вирусов, кроме геномной (наследственной) функции, выполняет функцию информационной, или матричной РНК (иРНК, или мРНК); она является матрицей для белкового синтеза на рибосомах инфицированной клетки. Плюс-нить РНК является инфекционной: при введении в чувствительные клетки она способна вызвать инфекционный про-

    цесс. Минус-нить (негативная нить) РНК-содержащих вирусов выполняет только наследственную функцию; для синтеза белка на минус-нити РНК синтезируется комплементарная ей нить. У некоторых вирусов РНК-геном является амбиполярным (ambisense от греч. амби - с обеих сторон, двойная комплементарность), т.е. содержит плюс- и минус-сегменты РНК.

    Различают простые вирусы (например, вирус гепатита А) и сложные вирусы (например, вирусы гриппа, герпеса, коронавирусы).

    Простые, или безоболочечные, вирусы имеют только нуклеиновую кислоту, связанную с белковой структурой, называемой капсидом (от лат. capsa - футляр). Протеины, связанные с нуклеиновой кислотой, известны как нуклеопротеины, а ассоциация вирусных протеинов капсида вируса с вирусной нуклеиновой кислотой названа нуклеокапсидом. Некоторые простые вирусы могут формировать кристаллы (например, вирус ящура).

    Капсид включает повторяющиеся морфологические субъединицы - капсомеры, скомпонованные из нескольких полипептидов. Нуклеиновая кислота вириона, связываясь с капсидом, образует нуклеокапсид. Капсид защищает нуклеиновую кислоту от деградации. У простых вирусов капсид участвует в прикреплении (адсорбции) к клетке хозяина. Простые вирусы выходят из клетки в результате ее разрушения (лизиса).

    Сложные, или оболочечные, вирусы (рис. 2.11), кроме капсида, имеют мембранную двойную липопротеиновую оболочку (синоним: суперкапсид, или пеплос), которая приобретается путем почкования вириона через мембрану клетки, например через плазматическую мембрану, мембрану ядра или мембрану эндоплазматического ретикулума. На оболочке вируса расположены гликопротеиновые шипы,

    или шипики, пепломеры. Разрушение оболочки эфиром и другими растворителями инактивирует сложные вирусы. Под оболочкой некоторых вирусов находится матриксный белок (М-белок).

    Вирионы имеют спиральный, икосаэдрический (кубический) или сложный тип симметрии капсида (нуклеокапсида). Спиральный тип симметрии обусловлен винтообразной структурой нуклеокапсида (например, у вирусов гриппа, коронавирусов): капсомеры уложены по спирали вместе с нуклеиновой кислотой. Икосаэдрический тип симметрии обусловлен образованием изометрически полого тела из капсида, содержащего вирусную нуклеиновую кислоту (например, у вируса герпеса).

    Капсид и оболочка (суперкапсид) защищают вирионы от воздействия окружающей среды, обусловливают избирательное взаимодействие (адсорбцию) своими рецепторными белками с опреде-

    Рис. 2.11. Строение оболочечных вирусов с икосаэдрическим (а) и спиральным (б) капсидом

    ленными клетками, а также антигенные и иммуногенные свойства вирионов.

    Внутренние структуры вирусов называют сердцевиной. У аденовирусов сердцевина состоит из гистоноподобных белков, связанных с ДНК, у реовирусов - из белков внутреннего капсида.

    Лауреат Нобелевской премии Д. Балтимор предложил систему балтиморской классификации, основанной на механизме синтеза мРНК. Эта классификация размещает вирусы в 7 группах (табл. 2.3). Международный комитет на таксономии вирусов (ICTV) принял универсальную систему классификации, которая использует такие таксономические категории, как семейство (название оканчивается на viridae), подсемейство (название оканчивается на virinae), род (название оканчивается на virus). Вид вируса не получил биноминального названия, как у бактерий. Вирусы классифицируют по типу нуклеиновой кислоты (ДНК или РНК), ее структуре и количеству нитей. Они имеют двунитевые или однонитевые нуклеиновые кислоты; позитивную (+), негативную (-) полярность нуклеиновой кислоты или смешанную полярность нуклеиновой кислоты, амбиполярную (+, -); линейную или циркулярную нуклеиновую кислоту; фрагментированную или нефрагментированную нуклеиновую кислоту. Учитывают также размер и морфологию вирионов, количество капсомеров и тип симметрии нуклеокапсида, наличие оболочки (суперкапсида), чувствительность к эфиру и дезоксихолату, место размножения в клетке, антигенные свойства и др.

    Таблица 2.3. Основные вирусы, имеющие медицинское значение

    Продолжение табл. 2.3

    Окончание табл. 2.3

    Вирусы поражают животных, бактерии, грибы и растения. Являясь основными возбудителями инфекционных заболеваний человека, вирусы также участвуют в процессах канцерогенеза, могут передаваться различными путями, в том числе через плаценту (вирус краснухи, цитомегаловирус и др.), поражая плод человека. Они могут приводить и к постинфекционным осложнениям - развитию миокардитов, панкреатитов, иммунодефицитов и др.

    К неклеточным формам жизни, кроме вирусов, относят прионы и вироиды. Вироиды - небольшие молекулы кольцевой, суперспирализованной РНК, не содержащие белок и вызывающие заболевания растений. Патологические прионы - инфекционные белковые частицы, вызывающие особые конформационные болезни в результате изменения структуры нормального клеточного прионового протеина (PrP c ), который имеется в организме животных и человека. PrP с выполняет регуляторные функции. Его кодирует нормальный прионовый ген (PrP-ген), расположенный в коротком плече 20-й хромосомы человека. Прионные болезни протекают по типу трансмиссивных губкообразных энцефалопатий (болезнь Крейтцфельда-Якоба, куру и др.). При этом прионный протеин приобретает другую, инфекционную форму, обозначаемую как PrP sc (sc от scrapie - скрепи - прионная инфекция овец и коз). Этот инфекционный прионный протеин имеет вид фибрилл и отличается от нормального прионного протеина третичной или четвертичной структурой.

    Задания для самоподготовки (самоконтроля)

    А. Отметьте микробы, являющиеся прокариотами:

    2. Вирусы.

    3. Бактерии.

    4. Прионы.

    Б. Отметьте отличительные особенности прокариотической клетки:

    1. Рибосомы 70S.

    2. Наличие пептидогликана в клеточной стенке.

    3. Наличие митохондрий.

    4. Диплоидный набор генов.

    В. Отметьте составные компоненты пептидогликана:

    1. Тейхоевые кислоты.

    2. N-ацетилглюкозоамин.

    3. Липополисарид.

    4. Тетрапептид.

    Г. Отметьте особенности строения клеточной стенки грамотрицательных бактерий:

    1. Мезодиаминопимелиновая кислота.

    2. Тейхоевые кислоты.

    4. Белки-порины.

    Д. Назовите функции спор у бактерий:

    1. Сохранение вида.

    2. Жароустойчивость.

    3. Расселение субстрата.

    4. Размножение.

    1. Риккетсии.

    2. Актиномицеты.

    3. Спирохеты.

    4. Хламидии.

    Ж. Назовите особенности актиномицет:

    1. Имеют термолабильные споры.

    2. Грамположительные бактерии.

    3. Отсутствует клеточная стенка.

    4. Имеют извитую форму.

    З. Назовите особенности спирохет:

    1. Грамотрицательные бактерии.

    2. Имеют двигательный фибриллярный аппарат.

    3. Имеют извитую форму.

    И. Назовите простейшие, обладающие апикальным комплексом, позволяющим проникать внутрь клетки:

    1. Малярийный плазмодий.

    3. Токсоплазма.

    4. Криптоспоридии.

    К. Назовите отличительную особенность сложноорганизованных вирусов:

    1. Два типа нуклеиновой кислоты.

    2. Наличие липидной оболочки.

    3. Двойной капсид.

    4. Наличие неструктурных белков. Л. Отметьте высшие грибы:

    1. Mucor.

    2. Candida.

    3. Penicillium.

    4. Aspergillus.