» » Хроматин: определение, строение и роль в делении клеток. Хроматин: определение, строение и роль в делении клеток Структурные и функциональные компоненты хроматина

Хроматин: определение, строение и роль в делении клеток. Хроматин: определение, строение и роль в делении клеток Структурные и функциональные компоненты хроматина

1. Виды хроматина

2. Гены, спейсеры

3. Последовательность нуклеотодов в ДНК

4. Пространственная организация ДНК

1. Во время покоя между актами деления определенные участки хромосом и целые хромосомы остаются компактными. Эти участки хроматина называют гетерохроматином. Он хорошо прокрашивается.

После деления ядра хроматин разрыхляется и в таком виде на­зывается эухроматином. Гетерохроматин в отношении транс­крипции неактивен, а в отношении репликации ДНК ведет се­бя иначе, чем эухроматин.

Факультативный гетерохроматин бывает гетерохроматичным только временами. Он информативен, т. е. содержит гены. Ко­гда он переходит в эухроматическое состояние, эти гены могут становиться доступными для транскрипции. Из двух гомоло­гичных хромосом одна может быть гетерохроматической. Эта факультативная гетерохроматизация тканеспецифична и в оп­ределенных тканях не происходит.

Конститутивный гетерохроматин всегда гетерохроматичен. Он состоит из многократно повторяющихся последовательно­стей оснований, неинформативен (не содержит генов) и по­этому всегда неактивен в отношении транскрипции. Его мож­но видеть и во время деления ядер. Он встречается :

Чаще всего у центромеры;

На концах хромосом (включая сателлиты);

Вблизи организатора ядрышка;

Вблизи гена 5S-PHK.

Гетерохроматин, прежде всего факультативный, во время ин­терфазы может объединяться в интенсивно окрашивающийся хромоцентр, который находится в большинстве случаев у края клеточного ядра или ядрышка.

2. Каждая хромосома - это непрерывная двойная спираль ДНК, ко­торая у высших организмов состоит более чем из 10 8 пар осно­ваний. В хромосомах высших растений и животных каждая двойная спираль ДНК (диаметром 2 нм) имеет длину от одно­го до нескольких сантиметров. В результате многократного за­кручивания она упакована в хроматиду длиной несколько мик­рометров.

Вдоль этой двойной спирали линейно распределены гены, ко­торые составляют вместе до 25% ДНК.

Ген - это функциональная единица ДНК, содержащая информа­цию для синтеза полипептида или РНК. Средняя длина гена -около 1000 пар оснований. Последовательность оснований в каждом гене уникальна.

Между генами находятся спейсеры - неинформативные отрезки ДНК различной длины (иногда более 20 000 пар оснований), которые имеют значение для регулирования транскрипции со­седнего гена.

Транскрипируемые спейсеры купируются при транскрипции вме­сте с геном, и их комплементарные копии появляются в пре-и-РНК по обе стороны от копии гена. Даже внутри самого ге­на имеются (только у эукариот и их вирусов) неинформатив­ные последовательности, так называемые интроны, которые тоже транскрипируются. При процессинге все копии интронов и большинство копий спейсеров вырезаются с помощью фер­ментов.

Нетранскрипируемые спейсеры встречаются между генами для гистонов, а также между генами для р-РНК.

Избыточные гены представлены большим числом (до 10 4 и бо­лее) идентичных копий. Это гены :

Для т-РНК;

5S-PHK и гистонов;

Для продуктов, синтезируемых в больших количествах.

Копии расположены непосредственно друг за другом и разре­шены идентичными спейсерами. У морского ежа гены для гис­тонов Н 4 , Н 2 ь, Н 2а и Hi лежат друг за другом, и эта генная по­следовательность повторяется в ДНК больше 100 раз.

3. Повторяющиеся последовательности - это последовательности нуклеотидов, многократно представленные в ДНК. Умеренно повторяющиеся последовательности - последовательности дли­ной в среднем 300 пар нуклеотидов с 10 2 -10 4 повторениями. К ним относятся избыточные гены, а также большинство спейсеров.

Высокоповторяющиеся последовательности с 10 5 -10 6 повторе­ниями образуют конститутивный гетерохроматин. Они всегда неинформативны. Это в основном короткие последовательно­сти, в них обнаруживается чаще всего 7-10 и лишь редко - только 2 (например, AT) или, наоборот, свыше 300 пар нук­леотидов. Они группируются вместе, одна повторяющаяся по­следовательность идет непосредственно за другой. ДНК высокоповторяющегося хроматина называют "сателлит-ными ДНК" по их поведению при аналитических процедурах фракционирования. Около 75% всего хроматина не участвует в транскрипции: это высокоповторяющиеся последовательности и нетраснкрипируемые спейсеры.

4. В изолированном хроматине участки двойной спирали ДНК об­виваются вокруг молекул гистонов, так что здесь возникает су­перспираль первого порядка. Комплексы ДНК с гистоном назы­вают нуклеосомами. Они имеют форму диска или линзы и размеры около 10 Ч 10 Ч 5 нм. В одну нуклеосому входят :

8 молекул гистонов:

Центральный тетрамер из двух молекул Нз и двух Н 4 ; и отдельно по два Н 2а и Н 2 ь;

Участок ДНК (около 140 пар оснований), который образует примерно 1,25 витка спирали и прочно связан с центральным тетрамером.

Между нуклеосомами лежат участки спирали из 30-100 пар оснований без суперспиральной структуры; здесь связывается гистон Hi

В нашивном хроматине ДНК еще больше укорочена в результа­те малоизученной дальнейшей спирализации (суперспирали высших порядков), которая, очевидно, фиксируется благодаря гистону Hi (и некоторым негистоновым белкам). При переходе к интерфазе эухроматин разрыхляется, так как некоторые из суперспиралей более высокого порядка раскру­чиваются. Это происходит, вероятно, в результате конформа-ционных изменений гистонов и ослабления взаимодействий между молекулами Hi Хроматиновые структуры толщиной 10- 25 нм (основные хроматиновые нити или спирали) видны и во время интерфазы.

В препарате хроматина на долю ДНК приходится обычно 30-40%. Эта ДНК представляет собой двухцепочечную спиральную молекулу. ДНК эукариотических клеток гетерогенна по составу, содержит несколько классов последовательностей нуклеотидов:часто повторяющиеся последовательности (>106 раз), входящие во фракцию сателитной ДНК и не транскрибирующиеся; фракция умеренно повторяющихся последовательностей (102-105), представляющих блоки истинных генов, а также короткие последовательности, разбросанные по всему геному; фракция уникальных последовательностей, несущая информацию для большинства белков клетки.

Хроматин

В состав хроматина входит ДНК в комплексе с белком. В интерфазных клетках хроматин может равномерно заполнять объем ядра или же располагаться отдельными сгустками (хромоцентры). Часто он особенно четко выявляется на периферии ядра (пристеночный, примембранный хроматин) или образует внутри ядра переплетения довольно толстых (около 0.3 мкм) и длинных тяжей, образующих подобие внутриядерной цепи.

В интерфазе в зоне ядрышкового организатора образуется ядрышко. Эухроматин -- это деконденсированные, деспирализованные участки ДНК, с которых считывается генетическая информация об аминокислотном составе белка (транскрипция). Эухроматин -- функционально активная часть хромосомы.

Гетерохроматин -- это конденсированные, спирализованные участки ДНК. Гетерохроматин -- функционально неактивные части хромосомы. Гетерохроматин интенсивно окрашивается основными красителями, тогда как эухроматин не обладает этим свойством и выглядит в виде светлых, неокрашенных участков среди глыбок гетерохроматина.

Хроматин интерфазных ядер представляет собой несущие ДНК тельца (хромосомы), которые теряют в это время свою компактную форму, разрыхляются, деконденсируются. Степень такой деконденсации хромосом может быть различной в ядрах разных клеток. Когда хромосома или ее участок полностью деконденсирован, тогда эти зоны называют диффузным хроматином. При неполном разрыхлении хромосом в интерфазном ядре видны участки конденсированного хроматина (иногда называемого гетерохроматин). Чем более диффузен хроматин интерфазного ядра, тем выше в нем синтетические процессы. Максимально конденсирован хроматин во время митотического деления клеток, когда он обнаруживается в виде плотных телец - хромосом.

в рабочем, частично или полностью деконденсированном, когда с их участием в интерфазном ядре происходят процессы транскрипции и редупликации;

в неактивном - в состоянии метаболического покоя при максимальной их конденсированности, когда они выполняют функцию распределения и перенося генетического материала в дочерние клетки.

В химическом отношении препараты хроматина представляют собой сложные комплексы дезоксирибонуклеопротеидов, в состав которых входит ДНК и специальные хромосомные белки - гистоны.

Белки хроматина

К ним относятся гистоны и негистоновые белки.

Гистоны - сильноосновные белки. Их щелочность связана с их обогащенностью основными аминокислотами (главным образом лизином и аргинином). Эти белки не содержат триптофана. Препарат суммарных гистонов можно разделить на 5 фракций:

Н1 (от английского histone) - богатый лизином гистон,

Н2а - умеренно богатый лизином гистон, Н2б - умеренно богатый лизином гистон,

Н4 - богатый аргинином гистон, Н3 - богатый аргинином гистон,

Гистоны синтезируются на полисомах в цитоплазме, этот синтез начинается несколько раньше редупликации ДНК. Синтезированные гистоны мигрируют из цитоплазмы в ядро, где и связываются с участками ДНК.

Негистоновые белки - наиболее плохо охарактеризованная фракция хроматина.

Ямдрышки

Участки хромосом, на которых происходит синтез рибосомных рибонуклеиновых кислот (рРНК). Находятся внутри ядра клетки, и не имеют собственной мембранной оболочки, однако хорошо различимы под световым и электронным микроскопом].

Основной функцией ядрышка является синтез рибосомных РНК и рибосом, на которых в цитоплазме осуществляется синтез полипептидных цепей. В геноме клетки имеются специальные участки, так называемые ядрышковые организаторы, содержащие гены рибосомной РНК (рРНК), вокруг которых и формируются ядрышки. В ядрышке происходит синтез рРНК РНК полимеразой I, её созревание, сборка рибосомных субъединиц. В ядрышке локализуются белким, принимающие участие в этих процессах. Некоторые из этих белков имеют специальную последовательность -- сигнал ядрышковой локализации. Электронная микроскопия позволяет выделить в ядрышке два основных компонента: гранулярный (по периферии) -- созревающие субъединицы рибосом и фибриллярный (в центре) -- рибонуклеопротеидные тяжи предшественников рибосом.

Гранулярный компонент представлен зернами (диаметр 10--20 нм), состоящими из рибонуклеопротеидных частиц (субъединицы рибосом). Фибриллярная часть состоит из плотных тонких электронноплотных нитей (диаметр 5--8 нм), образующих компактную массу. Эти волокна концентрируются вокруг более светлых сердцевин из менее плотного материала (фибриллярные центры). Считается, что фибриллярный материал представляет собой РНК (рибосомальная РНК), а фибриллярные центры состоят из ДНК и по строению соответствуют зернам хроматина.

Аморфный компонент окрашивается бледно и содержит участки расположения ядрышковых организаторов со специфическими РНК-связывающими белками и крупными петлями ДНК, активно участвующими в транскрипции рибосомальной РНК-Фибриллярный и гранулярный компоненты образуют ядрышковую нить (нуклеонему), толщина которой 60--80 нм.

Основной функцией ядрышка является синтез рибосом. В геноме клетки имеются специальные участки, так называемые ядрышковые организаторы, содержащие гены рибосомной РНК (рРНК), вокруг которых и формируются ядрышки. В ядрышке происходит синтез рРНК РНК полимеразой I, ее созревание, сборка рибосомных субчастиц. В ядрышке локализуются белки, принимающие участие в этих процессах.

Для выделения хроматина используют его свойство переходить в растворенное состояние при экстракции водными растворами с низкой ионной силой.

Белки-гистоны составляют от 40 до 80% всех белков, входящих в состав выделенного хроматина (остальное – мембранные компоненты, РНК, углеводы, липиды, гликопротеиды)

В структурном отношении хроматин (нуклеогистон) представляет собой нитчатые комплексные молекулы дезоксирибонуклеопротеида (ДНП ), которые состоят из ДНК, ассоциированной с гистонами.

Толщина нитчатых фибрилл ДНП: 10-30 нм

Молекулярная масса ДНК хроматина: 7-9*10^6

Концентрация ДНК в интерфазном ядре: до 100 мг/мл.

В среднем на интерфазное ядро приходится около 2 м ДНК, которая локализуется в сферическом ядре со средним диаметром около 10 мкм. Это означает, что такая огромная масса ДНК должна быть уложена с коэффициентом упаковки 1*10^3 – 1*10^4

Эукариотические клетки содержат всего 5-7 типов молекул гистонов.

Взаимодействие гистонов с ДНК происходит за счёт солевых или ионных связей и неспецифично в отношении состава и последовательности нуклеотидов в ДНК.

Основные свойства гистонов:

1) Это щелочные белки, свойства которых определяются относительно высоким модержанием таких основных аминокислот, как лизин и аргинин (обуславливаются наличием положительных зарядов на аминогруппах лизина и аргинина)

2) Относительно небольшая молекулярная масса.

Гистоны H3 и H4 относят к аргининбогатым, H2A и H2B относят к белкам, умеренно обогащенным лизином. Гистоны H1 обогащены лизином.

У гистона H1 наиболее вариабельным является N-конец , осуществляющий связь с другими гистонами, а С-конец , богатый лизином, взаимодействует с ДНК.

Гистоны синтезируются в цитоплазме, транспортируются в ядро и связываются с ДНК во время её репликации в S-периоде, т.е синтезы гистонов и ДНК синхронизированны.

Уровни компактизации ДНК:

1) Нуклеосомный

2) Нуклеомерный

3) Хромомерный

4) Хромонемный

5) Хроматидный

1) Укладка гистонами.

Типы гистонов: H1, H2A, H2B, H3, H4.

Гистоны заряжены положительно, хорошо взаимодействуют с отрицательно заряженной ДНК.

Гистон Н1 отделяется в растворе 0,6М NaCl. Все гистоны отделяются в 2М растворе.

N-конец гистона взаимодействует с другими гистонами, он вариабелен. С-конец консервативен и взаимодействует с ДНК.

Самые консервативные гистоны - Н3 и Н4.

Нуклеосома – дискретная частица хроматина. На весь гаплоидный геном человека приходится 1,5 * 10^7 нуклеосом.

Коэффициент укладки с гистонами К=7, ДНК укорачивается в 7 раз.

Одна обмотка = 146 пар нуклеотидов. Между нуклеосомами (линкер ) 54 пары нуклеотидов. Период равен 200 нуклеотидов.

Укладка почти двух витков ДНК по периферии сердцевины нуклеосомы происходит, как считается, за счёт взаимодействия положительно заряженных аминокислотных остатков на пов-ти октаметра гистонов с фосфатами ДНК.

Ключевыми в построении нуклеосом оказались гистоны H3 и H4 (см рисунок в тетради!!!)

В момент синтеза ДНК уже существует пул минтезированных гистонов всех классов, готовых войти в состав нуклеосом. Гистоновые гены, относящиеся к фракции умеренно повторяющихся последовательностей ДНК, представлены в виде множественных копий для каждого гистона. Они активируются вместе с началом синтеза ДНК, поэтому по мере продвижения репликационной вилки новые участки ДНК могут сразу взаимодействовать с новосинтезированными гистонами.

Новосинтезированные гистоны и старые гистоны в составе предшествующих нуклеосом не смешиваются при образовании нуклеосом во время репликации ДНК. Вместо этого октаметры гистонов, присутствующие до репликации, остаются интактными и переходят на дочерний дуплекс ДНК, в то время, как новые гистоны собираются в совершенно новые кор-частицы на свободных от нуклеосом участках ДНК.

2) Фибрилла (30нм)

Соленоидный тип укладки: Спираль, зигзагообразная укладка (один виток – 6 нуклеосом). Считается, что гистон Н1 обеспечивает взаимодействие между соседними нуклеосомами, не только сближая и связывая их, но и способствуя образованию кооперативной связи между соседними нуклеосомами, благодаря чему образуется плотная спираль. (плотность упаковки – 40)

Показано, что фибрилла хроматина диаметром 30 нм. может обратимо менять свой диаметр: становиться фибриллой толщиной 10 нм, если препараты хроматина перевести в деионизированную воду.

Второй тип укладки: 25-30 нм нуклеомеры, глобулярная укладка. 40кратное уплотнение ДНК.

Укладка почти двух витков ДНК по периферии сердцевины нуклеосомы

Модель нерегулярного соленоида: число нуклеосом на виток спирали не является строго постоянной величиной, что может привести к чередованию участков с большим или меньшим числом нуклеосом на виток.

3) Хромомеры (60-80 нм)

Петлевая модель укладки. Средний размер петель – 60 т.п.н.

Кол-во петель в розетке – 15-80.

Основание петель закреплено внутри ядра, на участках негистоновых белков.

4) Хромонема (100 нм)

У растений можно увидеть в интерфазных ядрах, у животных - в телофазе, в процессе деконденсации.

5) Хроматида.

Также в ядре присутствуют негистоновые белки:

1) SIR (silent information regulator)

белки, взаимодействующие с гетерохроматином, модифицируют N-конец гистонов, инактивация хроматина.

2) H3-CENPA (centromer protein)

локализован в центре, конститутивный гетерохроматин, стабильная инактивация.

3) HP1 (heterochromatin protein 1)

4) HP1+H3+метилтрансфераза+деацетилаза (удаление ацетильных групп) = подавление транскрипции.

5) В области кинетохоры наблюдается структурное образование - корона. Оно содержит много белков, функции большинства из них неизвестны.

6) Белки HMG («белки Джонса») – High Mobility Group

Основные HMG-белки: HMG-1, HMG-2, HMG-14, HMG-17. Являются регуляторами транскрипции.

Модели строения хромосом:

1) Модель спутанных нитей

2) Хаотическая модель

3) Петлевая модель

4) Соленоидная модель

В препарате хроматина на долю ДНК приходится обычно 30-40%. Эта ДНК представляет собой двухцепочечную спиральную молекулу. ДНК хроматина обладает молекулярной массой 7-9*10 6 . Такую сравнительно малую массу ДНК из препаратов можно объяснить механическими повреждениями ДНК в процессе выделения хроматина.

Общее количество ДНК, входящее в ядерные структуры клеток, в геном организмов, колеблется от вида к виду. Сравнивая количество ДНК на клетку у эукариотических организмов, трудно уловить какие-либо корреляции между степенью сложности организма и количеством ДНК на ядро. Примерно одинаковое количество ДНК имеют различные организмы, как лен, морской еж, окунь (1,4-1,9 пг) или рыба голец и бык (6,4 и 7 пг).

У некоторых амфибий в ядрах количество ДНК больше, чем в ядрах человека, в 10-30 раз, хотя генетическая конституция человека несравненно сложнее, чем у лягушек. Следовательно, можно предполагать, что “избыточное” количество ДНК у более низко организованных организмов либо не связано с выполнением генетической роли, либо число генов повторяется то или иное число раз.

Сателлитная ДНК, или фракция ДНК с часто повторяющимися последовательностями, может участвовать в узнавании гомологичных районов хромосом при мейозе. По другим предположениям, эти участки играют роль разделителей (спейсеров) между различными функциональными единицами хромосомной ДНК.

Как оказалось, фракция умеренно повторяющихся (от 10 2 до 10 5 раз) последовательностей принадлежит к пестрому классу участков ДНК, играющих важную роль в обменных процессах. В эту фракцию входят гены рибосомных ДНК, многократно повторенные участки для синтеза всех тРНК. Более того, некоторые структурные гены, ответственные за синтез определенных белков, также могут быть многократно повторены, представлены многими копиями (гены для белков хроматина - гистонов).

Итак, ДНК эукариотических клеток гетерогенна по составу, содержит несколько классов последовательностей нуклеотидов:

часто повторяющиеся последовательности (>10 6 раз), входящие во фракцию сателитной ДНК и не транскрибирующиеся;

фракция умеренно повторяющихся последовательностей (10 2 -10 5), представляющих блоки истинных генов, а также короткие последовательности, разбросанные по всему геному;

фракция уникальных последовательностей, несущая информацию для большинства белков клетки.

ДНК прокариотического организма представляет собой одну гигантскую циклическую молекулу. ДНК эукариотических хромосом представляет собой линейные молекулы, состоящие из тандемно (друг за другом) расположенных репликонов разного размера. Средний размер репликона около 30 мкм. Тем самым в составе генома человека должно встречаться более 50 000 репликонов, участков ДНК, которые синтезируются как независимые единицы. Эти репликоны имеют начальную и терминальную точки синтеза ДНК.

Представим себе, что у эукариотических клеток каждая из хромосомных ДНК, как и у бактерий, является одним репликоном. В этом случае при скорости синтеза 0,5 мкм в минуту (для человека) редупликация первой хромосомы с длиной ДНК около 7 см должна занять 140 000 минут, или около трех месяцев. На самом же деле благодаря полирепликонному строению молекул ДНК весь процесс занимает 7-12 ч.

Хроматин - основной компонент клеточного ядра; его достаточно легко получить из выделенных интерфазных ядер и из выделенных митотических хромосом. Для этого используют его свойство переходить в растворенное состояние при экстракции водными растворами с низкой ионной силой или просто деионизованной водой. При этом участки хроматина набухают и переходят в гель. Чтобы такие препараты перевести в настоящие растворы, необходимы сильные механические воздействия: встряхивание, перемешивание, дополнительная гомогенизация. Это, конечно, приводит к частичному разрушению исходной структуры хроматина, дробит его на мелкие фрагменты, но практически не меняет его химического состава.

Фракции хроматина, полученные из разных объектов, обладают довольно однообразным набором компонентов. Было найдено, что по суммарному химическому составу хроматин из интерфазных ядер мало отличается от хроматина из митотических хромосом. Главными компонентами хроматина являются ДНК и белки, среди которых основную массу составляют гистоны и негистоновые белки (табл. 3).

В среднем в хроматине около 40% приходится на ДНК и около 60% - на белки, среди которых специфические ядерные белки-гистоны составляют от 40 до 80% от всех белков, входящих в состав выделенного хроматина. Кроме того, в состав хроматиновой фракциям входят мембранные компоненты, РНК, углеводы, липиды, гликопротеиды. Вопрос о том, насколько эти минорные компоненты входят в структуру хроматина, еще не решен. Так, РНК может представлять собой транскрибируемую РНК, которая еще не потеряла связь с матрицей ДНК. Другие же минорные компоненты могут относиться к веществам соосажденных фрагментов ядерной оболочки.

В структурном отношении хроматин представляет собой нитчатые комплексные молекулы дезоксирибонуклеопротеида (ДНП), которые состоят из ДНК, ассоциированной с гистонами (см. рис. 57). Поэтому укоренилось другое название хроматина - нуклеогистон. Именно за счет ассоциации гистонов с ДНК образуются очень лабильные, изменчивые нуклеиново-гистоновые комплексы, где отношение ДНК:гистон равно примерно единице, т.е. они присутствуют в равных весовых количествах. Эти нитчатые фибриллы ДНП и есть элементарные хромосомные, или хроматиновые, нити, толщина которых в зависимости от степени упаковки ДНК может колебаться от 10 до 30 нм. Фибриллы ДНП могут в свою очередь дополнительно компактизоваться с образованием более высоких уровней структуризации ДНП, вплоть до митотической хромосомы. Роль некоторых негистоновых белков заключается именно в образовании высоких уровней компактизации хроматина.

ДНК хроматина

В препарате хроматина на долю ДНК приходится обычно 30-40%. Эта ДНК представляет собой двухцепочечную спиральную молекулу, подобную чистой выделенной ДНК в водных растворах. Об этом говорят многие экспериментальные данные. Например, при нагревании растворов хроматина наблюдается повышение оптической плотности раствора, так называемый гиперхромный эффект, связанный с разрывом межнуклеотидных водородных связей между цепями ДНК, подобно тому, что происходит при нагревании (плавлении) чистой ДНК.

Вопрос о размере, длине молекул ДНК в составе хроматина имеет важное значение для понимания структуры хромосомы в целом. При стандартных методах выделения ДНК хроматина обладает молекулярной массой 7-9·10 6 , что значительно меньше молекулярной массы ДНК из кишечной палочки (2,8·10 9). Такую сравнительно малую молекулярную массу ДНК из препаратов хроматина можно объяснить механическими повреждениями ДНК в процессе выделения хроматина. Если же выделять ДНК в условиях, исключающих встряхивание, гомогенизацию и другие воздействия, то удается из клеток получить молекулы ДНК очень большой длины. Длину молекул ДНК из ядер и хромосом эукариотических клеток можно определить с помощью метода светооптической радиоавтографии, подобно тому как это изучалось на прокариотических клетках.

Было обнаружено, что в составе хромосом длина индивидуальных линейных (в отличие от прокариотических хромосом) молекул ДНК может достигать сотен микрометров и даже нескольких сантиметров. Так, у разных объектов длина молекулы ДНК варьировала от 0,5 мм до 2 см. Эти результаты показали, что расчетная длина ДНК на хромосому близко совпадает с цифрами, полученными радиоавтографическим методом.

После мягкого лизиса клеток эукариот молекулярные массы ДНК можно определять непосредственно физико-химическими методами. Показано, что максимальная молекулярная масса молекулы ДНК дрозофилы равна 41·10 9 , что соответствует длине около 2 см. У некоторых дрожжей на хромосому приходится молекула ДНК с молекулярной массой 1·10 8 -10 9 , которая имеет размеры около 0,5 мм.

Такие длинные ДНК представляют собой одну молекулу, а не несколько более коротких, сшитых гуськом с помощью белковых связок, как считали некоторые исследователи. К этому заключению пришли после того, как оказалось, что длина молекул ДНК не изменяется после обработки препаратов протеолитическими ферментами.

Общее количество ДНК, входящее в ядерные структуры клеток, в геном организмов, колеблется от вида к виду, хотя у микроорганизмов количество ДНК на клетку значительно ниже, чем у беспозвоночных, высших растений и животных (табл. 4). Так, у мыши на ядро приходится почти в 600 раз больше ДНК, чем у кишечной палочки. Сравнивая количество ДНК на клетку у эукариотических организмов, трудно уловить какие-либо корреляции между степенью сложности организма и количеством ДНК на ядро. Примерно одинаковое количество ДНК имеют такие различные организмы, как лен, морской еж, окунь (1,4-1,9 пг) или рыба голец и бык (6,4 и 7 пг).

Значительны колебания количества ДНК в больших таксономических группах. Среди высших растений количество ДНК у разных видов может отличаться в сотни раз, так же как и среди рыб, в десятки раз отличается количество ДНК у амфибий.

В ядрах некоторых амфибий количество ДНК больше, чем в ядрах человека, в 10-30 раз, хотя генетическая конституция человека несравненно сложнее, чем у лягушек. Следовательно, можно предполагать, что «избыточное» количество ДНК у более низко организованных организмов либо не связано с выполнением генетической роли, либо число генов повторяется то или иное число раз.

Разрешить эти вопросы оказалось возможным на основании изучения кинетики реакции ренатурации, или гибридизации ДНК. Если фрагментированные молекулы ДНК в растворах подвергнуть тепловой денатурации, а затем инкубировать при температуре, несколько более низкой, чем та, при которой происходит денатурация, то будет происходить восстановление исходной двуспиральной структуры фрагментов ДНК за счет воссоединения комплементарных цепей - ренатурация. Для ДНК вирусов и прокариотических клеток было показано, что скорость такой ренатурации прямо зависит от величины генома: чем больше геном, чем больше количество ДНК на частицу или клетку, тем больше нужно времени для случайного сближения комплементарных цепей и специфической реассоциации большего числа разных по нуклеотидной последовательности фрагментов ДНК (рис. 53). Характер кривой реассоциации ДНК прокариотических клеток указывает на отсутствие повторяющихся последовательностей оснований в геноме прокариот: все участки их ДНК несут уникальные последовательности, число и разнообразие которых отражают степень сложности генетической композиции объектов и, следовательно, их общей биологической организации.

Совсем другая картина реассоциации ДНК наблюдается у эукариотических организмов. Оказалось, что в состав их ДНК входят фракции, которые ренатурируют с гораздо более высокой скоростью, чем можно было бы предполагать на основании размера их генома, а также фракция ДНК, ренатурирующая медленно, подобно уникальным последовательностям ДНК прокариот. Однако для эукариот требуется значительно большее время для ренатурации этой фракции, что связано с общим большим размером их генома и с большим числом различных уникальных генов.

В той части ДНК эукариот, которая отличается высокой скоростью ренатурации, различают две подфракции: 1) с высоко или часто повторяющимися последовательностями, где сходные участки ДНК могут быть повторены 10 6 раз; 2) с умеренно повторяющимися последовательностями, встречающимися в геноме 10 2 -10 3 раз. Так, у мыши во фракцию ДНК с часто повторяющимися последовательностями входит 10% общего количества ДНК на геном и 15% приходится на фракцию с умеренно повторяющимися последовательностями. Остальные 75% ДНК мыши представлены уникальными участками, соответствующими большому числу различных неповторяющихся генов.

Фракции с часто повторяющимися последовательностями могут обладать иной плавучей плотностью, чем основная масса ДНК, и поэтому их можно выделить в чистом виде как фракцию сателлитной ДНК. У мыши эта фракция имеет плотность, равную 1,691 г/мл, а основная часть ДНК - 1,700 г/мл. Различия плотности определяются различиями в нуклеотидном составе. Например, у мыши в этой фракции имеется 35% Г- и Ц-пар, а в основном пике ДНК - 42%.

Сателлитная ДНК, или фракция ДНК с часто повторяющимися последовательностями, не участвует в синтезе основных типов РНК в клетке, не связана с процессом синтеза белка. Этот вывод сделан на основании того, что ни один из типов РНК клетки (тРНК, иРНК, рРНК) не гибридизируется с сателлитными ДНК. Следовательно, на этих ДНК нет последовательностей, отвечающих за синтез клеточных РНК, т.е. сателлитные ДНК не являются матрицами для синтеза РНК, не участвуют в транскрипции.

Существует гипотеза о том, что часто повторяющиеся последовательности, не участвующие непосредственно в синтезе белков, могут нести информацию, важную для сохранения и функционирования хромосом. К ним могут быть отнесены многочисленные участки ДНК, связанные с белками остова интерфазного ядра (см. далее), участки начала репликации или транскрипции, а также участки ДНК, регулирующие эти процессы.

Методом гибридизации нуклеиновых кислот прямо на хромосомах (in situ ) была изучена локализация этой фракции. Для этого на изолированной сателлитной ДНК с помощью бактериальных ферментов синтезировали меченную 3 Н-уридином РНК. Затем цитологический препарат с хромосомами подвергали такой обработке, при которой происходит денатурация ДНК (повышенная температура, щелочная среда и др.). После этого на препарат помещали меченную 3 Н РНК и добивались гибридизации между ДНК и РНК. Радиоавтографически выявлено, что большая часть метки локализуется в зоне первичных перетяжек хромосом, в зоне их центромерных участков. Метка обнаруживалась также и в других участках хромосом, но очень слабо (рис. 54).

За последние 10 лет сделаны большие успехи в изучении центромерных ДНК, особенно у дрожжевых клеток. Так, у S. cerevisiae центромерная ДНК состоит из повторяющихся участков по 110 п.н. Она имеет два консервативных участка (I и III) и центральный элемент (II), обогащенный АТ-парами оснований. Сходное строение ДНК центромеры имеют хромосомы дрозофилы. Центромерная ДНК человека (альфоидная сателлитная ДНК) состоит из тандема мономеров по 170 п.н., организованных в группы димеров или пентамеров, которые в свою очередь образуют большие последовательности по 1-6·10 3 п.н. Такая самая большая единица повторена 100-1000 раз. С этой специфической центромерной ДНК комплексируются особые центромерные белки, участвующие в образовании кинетохора - структуры, обеспечивающей связь хромосом с микротрубочками веретена, и в движении хромосом в анафазе (см. далее).

ДНК с часто повторяющимися последовательностями обнаружена также в теломерных участках хромосом многих эукариотических организмов (от дрожжей до человека). Здесь чаще всего встречаются повторы, в которые входят 3-4 гуаниновых нуклеотида. У человека теломеры содержат 500-3000 повторов TTAGGG. Эти участки ДНК выполняют особую роль: они ограничивают хромосому с концов и предотвращают ее укорачивание в процессе многократной репликации.

Недавно было найдено, что высоко повторяющиеся последовательности ДНК интерфазных хромосом связываются специфически с белками - ламинами, подстилающими ядерную оболочку, и участвуют в заякоривании растянутых деконденсированных интерфазных хромосом, тем самым определяя порядок в локализации хромосом в объеме интерфазного ядра.

Сделано предположение, что сателлитная ДНК может участвовать в узнавании гомологичных районов хромосом при мейозе. По другим предположениям, участки с часто повторяющимися последовательностями играют роль разделителей (спейсеров) между различными функциональными единицами хромосомной ДНК, например между репликонами (см. далее).

Как оказалось, фракция умеренно повторяющихся (от 10 2 до 10 5 раз) последовательностей принадлежит к пестрому классу участков ДНК, играющих важную роль в процессах создания аппарата белкового синтеза. В нее входят гены рибосомных ДНК, которые могут быть повторены у разных видов от 100 до 1000 раз. В эту же фракцию входят многократно повторенные участки для синтеза всех тРНК. Более того, некоторые структурные гены, ответственные за синтез определенных белков, также могут быть многократно повторены, представлены многими копиями. Это гены для белков хроматина - гистонов, повторяющихся до 400 раз. Кроме того, в эту фракцию входят участки ДНК с разными последовательностями (по 100-400 п.н.), также многократно повторенными, но рассеянными по всему геному. Их роль еще не до конца ясна. Высказывается предположение, что такие участки ДНК могут представлять собой акцепторные или регуляторные участки разных генов.

Итак, ДНК эукариотических клеток гетерогенна по составу, содержит несколько классов последовательностей нуклеотидов: часто повторяющиеся последовательности (>106 раз), входящие во фракцию сателлитной ДНК и не транскрибирующиеся; фракция умеренно повторяющихся последовательностей (10 2 -10 5), представляющих блоки истинных генов, а также короткие последовательности, разбросанные по всему геному; фракция уникальных последовательностей, несущая информацию для большинства белков клетки.

Исходя из этих представлений, становятся понятными те различия в количестве ДНК, которые наблюдаются у разных организмов: они могут быть связаны с неодинаковой долей тех или иных классов ДНК в геноме организмов. Так, у амфибии Amphiuma (у которой ДНК в 20 раз больше, чем у человека) на долю повторяющихся последовательностей приходится до 80% всей ДНК, у луков - до 70, у лосося - до 60% и т.п. Истинное же богатство генетической информации должна отображать фракция уникальных последовательностей. Не нужно забывать, что в нативной, нефрагментированной молекуле ДНК хромосомы все участки, включающие уникальные, умеренно и часто повторяющиеся последовательности, связаны в единую гигантскую ковалентную цепь ДНК.

Молекулы ДНК гетерогенны не только по участкам разной нуклеотидной последовательности, но и различны в отношении их синтетической активности.

Репликация эукариотических ДНК

Бактериальная хромосома реплицируется как одна структурная единица, имеющая одну стартовую точку репликации и одну точку терминации. Таким образом, бактериальная циклическая ДНК является одним репликоном. От стартовой точки репликация идет в двух противоположных направлениях, так что по мере синтеза ДНК образуется так называемый глазок репликации, ограниченный с двух сторон репликационными вилками, что хорошо видно при электронномикроскопическом изучении вирусных и бактериальных реплицирующихся хромосом.

У эукариотических клеток организация репликации иного характера - полирепликоннная. Как уже говорилось, при импульсном включении 3 Н-тимидина множественная метка появляется практически во всех митотических хромосомах. Это означает, что одновременно в интерфазной хромосоме существует множество мест репликации и множество автономных точек начала репликации. Более подробно это явление было изучено с помощью радиоавтографии меченых молекул выделенных ДНК (рис. 55). Если клетки были импульсно мечены 3 Н-тимидином, то в световом микроскопе на автографах выделенных ДНК можно было видеть участки восстановленного серебра в виде пунктирных линий. Это небольшие отрезки ДНК, которые успели реплицироваться, а между ними расположены участки нереплицированной ДНК, которая не оставила радиоавтографа и поэтому была невидимой. По мере увеличения времени контакта 3 Н-тимидина с клеткой величина таких отрезков возрастает, а расстояние между ними уменьшается. Из этих экспериментов можно точно рассчитать скорость репликации ДНК у эукариотических организмов. Скорость движения репликационной вилки оказалась равной 1-3 т.п.н. в 1 мин у млекопитающих, около 1 т.п.н. в 1 мин у некоторых растений, что намного ниже скорости репликации ДНК у бактерий (50 т.п.н. в 1 мин). В этих же экспериментах была прямо доказана полирепликонная структура ДНК хромосом эукариот: по длине хромосомной ДНК, вдоль нее, располагается множество независимых участков репликации - репликонов. По расстоянию между средними точками смежных метящихся репликонов, т.е. по расстоянию между двумя соседними стартовыми точками репликации, можно узнать величину отдельных репликонов. В среднем величина репликонов у высших животных составляет около 30 мкм, или 100 т.п.н. Следовательно, в гаплоидном наборе млеко питающих должно быть 20 000-30 000 репликонов. У низших эукариот величина репликонов меньше - около 40 т.п.н. Так, у дрозофилы на геном приходится 3500 репликонов, а у дрожжей - 400. Как говорилось, синтез ДНК в репликоне идет в двух противоположных направлениях. Это легко доказывается радиоавтографически: если клеткам после импульсной метки дать возможность продолжить синтезировать ДНК в среде без 3 Н-тимидина, то его включение в ДНК уменьшится (будет происходить как бы разбавление метки), и на радиоавтографе можно будет видеть симметричное, с двух сторон реплицируемого участка, уменьшение количества зерен восстановленного серебра.

Реплицирующиеся концы, или вилки, в репликоне прекращают движение, когда встретятся с вилками соседних репликонов (в терминальной точке, общей для соседних репликонов). В этом месте реплицированные участки соседних репликонов объединяются в единые ковалентные цепи двух новосинтезированных молекул ДНК. Функциональное подразделение ДНК хромосом на репликоны совпадает со структурным подразделе­нием ДНК на домены, или петли, основания которых, как уже упоминалось, скреплены белковыми связками.

Таким образом, весь синтез ДНК на отдельной хромосоме протекает за счет независимого синтеза на множестве отдельных репликонов с последующим соединением концов соседних отрезков ДНК. Биологический смысл этого свойства становится ясным при сравнении синте за ДНК у бактерий и эукариот. Так, бактериальная монорепликонная хромосома длиной в 1600 мкм синтезируется со скоростью около получаса. Если бы сантиметровая молекула ДНК хромосомы млекопитающих реплицировалась тоже как монорепликонная структура, то на это ушло бы около недели (6 сут). Но если в такой хромосоме расположено несколько сотен репликонов, то для полной ее репликации понадобится всего около часа. На самом же деле время репликации ДНК у млекопитающих составляет 6-8 ч. Это связано с тем, что не все репликоны отдельной хромосомы включаются одновременно.

В некоторых случаях наблюдается одновременное включение всех репликонов или же появление дополнительных точек начала репликации, что дает возможность закончить синтез всех хромосом за минимально короткое время. Это явление происходит на ранних этапах эмбриогенеза некоторых животных. Так, известно, что при дроблении яиц шпорцевых лягушек Xenopus laevis синтез ДНК занимает всего 20 мин, тогда как в культуре соматических клеток этот процесс продолжается около суток. Аналогичная картина наблюдается у дрозофилы: на ранних эмбриональных стадиях весь синтез ДНК в ядре занимает 3,5 мин, а в клетках культуры ткани - 600 мин. При этом в клетках культуры величина репликонов оказалась почти в 5 раз больше, чем у эмбрионов.

Синтез ДНК по длине отдельной хромосомы происходит неравномерно. Обнаружено, что в индивидуальной хромосоме активные репликоны собраны в группы - репликативные единицы, которые включают в себя 20-80 точек начала репликации. Это следовало из анализа радиоавтографов ДНК, где наблюдалась именно такая сблоченность реплицирующихся отрезков. Другим основанием для представления о существовании блоков (кластеров) репликонов или репликационных единиц были эксперименты с включением в ДНК аналога тимидина - 5-бромдезоксиуридина (BrdU). Включение BrdU в интерфазный хроматин приводит к тому, что во время митоза участки с BrdU конденсируются в меньшей степени (недостаточная конденсация), чем те участки, где включался тимидин. Поэтому те участки митотических хромосом, в которые включился BrdU, будут слабо окрашиваться при дифференциальной окраске. Это позволяет на синхронизированных культурах клеток выяснить последовательность включения BrdU, т.е. последовательность синтеза ДНК по длине одной взятой хромосомы. Оказалось, что предшественник включается в большие участки хромосомы. Включение разных участков происходит строго последовательно в течение S-периода. Каждая хромосома характеризуется высокой стабильностью порядка репликации по своей длине и имеет свой специфический рисунок репликации.

Кластеры репликонов, объединенные в репликационные единицы, связаны с белками ядерного матрикса (см. далее), которые вместе с ферментами репликации образуют так называемые кластеросомы - зоны в интерфазном ядре, в которых идет синтез ДНК.

Порядок, в котором активируются репликационные единицы, может, вероятно, определяться структурой хроматина в этих участках. Например, зоны конститутивного гетерохроматина (вблизи центромеры) реплицируются обычно в конце S-периода, также в конце S-периода удваивается часть факультативного гетерохроматина (например, Х-хромосома самок млекопитающих). Особенно четко во времени последовательность репликации участков хромосом коррелирует с рисунком дифференциальной окраски хромосом: R-сегменты относятся к рано реплицирующимся, G-сегменты соответствуют участкам хромосом с поздней репликацией, С-сегменты (центромера) - места самой поздней репликации.

Так как в разных хромосомах величина и число разных групп дифференциально окрашенных сегментов различны, то это создает картину асинхронного начала и завершения репликации разных хромосом в целом. Во всяком случае, последовательность начала и окончания репликации отдельных хромосом в наборе не беспорядочная. Существует строгая последовательность репродукции хромосом относительно других хромосом в наборе.

Длительность процесса репликации отдельных хромосом прямо не зависит от их размеров. Так, крупные хромосомы человека группы А (1-3) оказываются мечеными в течение всего S-периода, так же как и более короткие хромосомы группы В (4-5).

Таким образом, синтез ДНК в геноме эукариот начинается почти одновременно на всех хромосомах ядра в начале S-периода. Но при этом происходит последовательное и асинхронное включение разных репликонов как в разных участках хромосом, так и в разных хромосомах. Последовательность репликации того или иного участка генома строго детерминирована генетически. Это последнее утверждение доказывается не только картиной включения метки в разные отрезки S-периода, но также тем, что существует строгая последовательность появления в ходе S-периода пиков чувствительности определенных генов к мутагенам.

Основные белки хроматина - гистоны

Роль ДНК в составе как интерфазных хромосом (хроматин интерфазного ядра), так и митотических хромосом достаточно ясна: хранение и реализация генетической информации. Однако для выполнения этих функций в составе интерфазных ядер необходимо иметь четкую структурную основу, которая позволила бы расположить огромные по длине молекулы ДНК в строгом порядке, чтобы с определенной временнóй последовательностью протекали процессы как синтеза РНК, так и редупликации ДНК. В интерфазном ядре концентрация ДНК достигает 100 мг/мл (!). В среднем на интерфазное ядро млекопитающих приходится около 2 м ДНК, которая локализуется в сферическом ядре со средним диаметром около 10 мкм. Это значит, что такая огромная масса ДНК должна быть уложена с коэффициентом упаковки 1·10 3 -1·10 4 . При этом в ядре должен сохраниться определенный порядок в расположении частично или полностью деконденсированных хромосом. Кроме того, должны быть реализованы условия для упорядоченного функционирования хромосом. Ясно, что все эти требования не могут быть осуществлены в бесструктурной, хаотической системе.

В клеточном ядре ведущая роль в организации расположения ДНК, в ее компактизации и регулировании функциональных нагрузок принадлежит ядерным белкам. Как уже указывалось, хроматин представляет собой сложный комплекс ДНК с белками - дезоксирибонуклеопротеин (ДНП), где на долю белков приходится около 60% сухой массы. Белки в составе хроматина очень разнообразны, но их можно разделить на две группы: гистоны и негистоновые белки. На долю гистонов приходится до 80% всех белков хроматина. Их взаимодействие с ДНК происходит за счет солевых или ионных связей и неспецифично в отношении состава или последовательностей нуклеотидов в молекуле ДНК. Несмотря на преобладание в общем количестве, гистоны представлены небольшим разнообразием белков: эукариотические клетки содержат всего 5-7 типов молекул гистонов. В отличие от гистонов так называемые негистоновые белки большей частью специфически взаимодействуют с определенными последовательностями молекул ДНК, очень велико разнообразие типов белков, входящих в эту группу (несколько сотен), велико разнообразие функций, которые они выполняют.

Гистоны связаны с ДНК в виде молекулярного комплекса, в виде субъединиц, или нуклеосом. До недавнего времени считалось, что ДНК равномерно покрыта этими белками, связь которых с ДНК определяется свойствами гистонов.

Гистоны - белки, характерные только для хроматина, - обладают рядом особых качеств. Это основные или щелочные белки, свойства которых определяются относительно высоким содержанием таких основных аминокислот, как лизин и аргинин. Именно положительные заряды на аминогруппах лизина и аргинина обусловливают соленую или электростатическую связь этих белков с отрицательными зарядами на фосфатных группах ДНК. Эта связь достаточно лабильна, легко нарушается, в результате чего может происходить диссоциация ДНП на ДНК и гистоны. Поэтому хроматин (дезоксирибонуклеопротеин, или, как его раньше называли, нуклеогистон) является сложным нуклеиново-белковым комплексом, в который входят линейные высокополимерные молекулы ДНК и огромное множество молекул гистонов (до 60 млн копий каждого типа гистонов на ядро). Гистоны - наиболее хорошо биохимически изученные белки (табл. 5).

Гистоны - относительно небольшие по молекулярной массе белки. Практически у всех эукариот они обладают сходными свойствами, обнаруживаются одни и те же классы гистонов. Классы гистонов отличаются друг от друга по содержанию разных основных аминокислот. Так, гистоны НЗ и Н4 относят к аргининбогатым из-за относительно высокого содержания в них этой аминокислоты. Эти гистоны являются наиболее консервативными из всех исследованных белков: их аминокислотные последовательности практически одинаковы даже у таких отдаленных видов, как корова и горох (всего две аминокислотные замены).

Два других гистона - Н2А и Н2В - относятся к белкам, умеренно обогащенным лизином. У различных объектов внутри этих групп гистонов обнаруживаются межвидовые вариации в их первичной структуре, в последовательности аминокислот.

Гистон H1 представляет собой не уникальную молекулу, а класс белков, состоящих из нескольких достаточно близкородственных белков с перекрывающимися последовательностями аминокислот. У этих гистонов обнаружены значительные межвидовые и межтканевые вариации. Однако их общим свойством является обогащенность лизином, что делает их самыми основными белками, которые легко отделяются от хроматина в солевых (0,5 М) растворах. В растворах с высокой ионной силой (1-2 М NaCl) все гистоны полностью отделяются от ДНК и переходят в раствор.

Для гистонов всех классов (особенно для H1) характерно кластерное распределение основных аминокислот - лизина и аргинина, на N- и С-концах молекул. Срединные участки молекул гистонов образуют несколько (3-4) α-спиральных участков, которые компактизуются в глобулярную структуру в изотонических условиях (рис. 56). По-видимому, богатые положительными зарядами неспирализованные концы белковых молекул гистонов и осуществляют их связь друг с другом и с ДНК.

У гистона H1 наиболее вариабельным является N-конец, осуществляющий связь с другими гистонами, а С-конец, богатый лизином, взаимодействует с ДНК.

В процессе жизнедеятельности клеток могут происходить посттрансляционные изменения (модификации) гистонов: ацетилирование и метилирование некоторых остатков лизина, что приводит к потере числа положительных зарядов, и фосфорилирование сериновых остатков, приводящее к появлению отрицательного заряда. Ацетилирование и фосфорилирование гистонов могут быть обратимыми. Эти модификации значительно меняют свойства гистонов, их способность связываться с ДНК. Например, повышенное ацетилирование гистонов предшествует активации генов, а фосфорилирование и дефосфорилирование связаны соответственно с конденсацией и деконденсацией хроматина.

Гистоны синтезируются в цитоплазме, транспортируются в ядро и связываются с ДНК во время ее репликации в S-периоде, т.е. синтезы гистонов и ДНК синхронизированы. При прекращении клеткой синтеза ДНК гистоновые информационные РНК за несколько минут распадаются и синтез гистонов останавливается. Включившиеся в хроматин гистоны очень стабильны, имеют низкую скорость замены.

Подразделение гистонов на пять групп и достаточное сходство их внутри каждой группы в целом характерны для эукариот. Однако целый ряд отличий в составе гистонов наблюдается как у высших, так и у низших эукариотических организмов. Так, у низших позвоночных вместо H1, характерного для всех тканей этих организмов, в эритроцитах находят гистон Н5, который содержит больше аргинина и серина. В то же время наблюдается отсутствие некоторых групп гистонов у ряда эукариот и в целом ряде случаев полная замена этих белков на другие.

Гистоноподобные белки были обнаружены в составе вирусов, бактерий и митохондрий. Так, у Е. coli в клетке в большом количестве выявлены белки (HU и Н-NS), по аминокислотному составу напоминающие гистоны.

Функциональные свойства гистонов

Широкое распространение гистонов, их сходство даже у очень отдаленных видов, обязательность вхождения их в состав хромосом - все это говорит об их чрезвычайно важной роли в процессе жизнедеятельности клеток. Еще до открытия нуклеосом существовало две взаимодополняющие друг друга группы гипотез о функциональной роли гистонов, о регуляторной и структурной их роли.

Обнаружено, что выделенный хроматин при добавлении к нему РНК-полимеразы может быть матрицей для транскрипции, однако активность его составляет всего лишь около 10% от активности, соответствующей активности выделенной чистой ДНК. Эта активность прогрессивно возрастает по мере удаления групп гистонов и может достичь 100% при полном удалении гистонов. Отсюда следовало, что общее содержание гистонов может регулировать уровень транскрипции. Это наблюдение совпадает с тем фактом, что по мере удаления гистонов, особенно H1, происходит прогрессивная деконденсация - разворачивание фибрилл ДНП, что, возможно, облегчает взаимодействие РНК-полимеразы с матричной ДНК. Также обнаружено, что модификация гистонов приводит к усилению транскрипции и одновременной декомпактизации хроматина. Следовательно, напрашивается вывод о том, что количественное и качественное состояние гистонов влияет на степень компактности и активности хроматина. Однако оставался открытым вопрос о специфичности регуляторных свойств гистонов: какова роль гистонов при синтезе специфических иРНК в различно дифференцированных клетках? Этот вопрос до сих пор еще не решен, хотя можно сделать некоторые обобщения: на эту роль могут претендовать те группы гистонов, которые наименее консервативны, такие как H1 или как Н2А и Н2В, которые могут в значительной мере модифицироваться и тем самым изменять свои свойства в определенных участках генома.

Была очевидна и структурная - компактизирующая - роль гистонов в организации хроматина. Так, постепенное добавление фракции гистонов к растворам чистой ДНК приводит к выпадению в осадок комплекса ДНП, и, наоборот, частичное удаление гистонов из препаратов хроматина ведет к его переходу в растворимое состояние. В то же время в цитоплазматических экстрактах ооцитов земноводных или яиц морских ежей, содержащих свободные гистоны, добавление любой ДНК (включая фаговую) приводит к образованию хроматиновых фибрилл (ДНП), длина которых в несколько раз короче исходных ДНК. Эти данные говорят о структурной, компактизирующей роли гистонов. Для того чтобы огромные сантиметровые молекулы ДНК уложить по длине хромосомы, имеющей размер всего несколько микрометров, молекула ДНК должна быть скручена, компактизована с плотностью упаковки, равной 1: 10 000. Оказалось, что в процессе компактизации ДНК существуют несколько уровней упаковки, первые из которых прямо определяются взаимодействием гистонов с ДНК.

Первый уровень компактизации ДНК: структурная роль нуклеосом

В ранних биохимических и электронно-микроскопических работах было показано, что препараты ДНП содержат нитчатые структуры с диаметром от 5 до 50 нм. Постепенно стало ясно, что диаметр фибрилл хроматина зависит от способа выделения препарата.

На ультратонких срезах интерфазных ядер и митотических хромосом после фиксации глутаровым альдегидом обнаруживались хроматиновые фибриллы толщиной 30 нм. Такие же размеры имели фибриллы хроматина при физической фиксации ядер - при быстром замораживании ядер, скалывании объекта и получении реплик с таких препаратов. В последнем случае исключалось воздействие на хроматин переменных химических условий. Но все эти методы и приемы не давали никакой информации о характере локализации ДНК и гистонов в хроматиновых фибриллах.

Крупным событием в изучении хроматина было открытие двумя разными способами нуклеосом - дискретных частиц хроматина. Так, при осаждении на подложку для электронной микроскопии препаратов хроматина в щелочных условиях при низкой ионной силе можно было видеть, что нити хроматина представляли собой что-то напоминающее «бусы на нитке»: небольшие, около 10 нм, глобулы, связанные друг с другом отрезками ДНК длиной около 20 нм (рис. 57 и 58). Эти наблюдения совпадали с результатами фракционирования хроматина после частичного нуклеазного переваривания.

Было найдено, что если подвергнуть действию нуклеазы микрококков выделенный хроматин, то он подвергается распаду на регулярно повторяющиеся структуры. Например, ДНК, полученная из хроматина, обработанного нуклеазой, состояла из серии отрезков, кратных 200 парам оснований; встречались отрезки в 200, 400, 600, 800 пар нуклеотидов (п.н.) и больше. Это говорит о том, что нуклеазной атаке в составе хроматина подвергаются участки ДНК, расположенные примерно через каждые 200 п.н. При этом в кислоторастворимую фракцию (низкополимерная) ДНК уходит всего 2% ядерной ДНК. Кроме того, после такой нуклеазной обработки из хроматина путем центрифугирования удается выделить фракцию частиц со скоростью седиментации 11S (S - единица Сведберга, определяющая скорость седиментации частиц, равна 1·10 -13 с), а также частицы кратного этой величине paзмера: димеры, тримеры, тетрамеры и т.д. Оказалось, что частицы 11S содержат около 200 п.н. ДНК и восемь гистонов (октамер) по две копии гистонов Н2А, Н2В, НЗ и Н4 и одну копию гистона H1. Такая сложная нуклеопротеидная частица получила название нуклеосомы. Более подробный анализ этой фракции показал, что нуклеосома устроена следующим образом: октамер гистонов образует белковую основу - сердцевину (от англ. core - кор, кóровая частица), по поверхности которой располагается ДНК величиной в 146 п.н., образующая 1,75 оборота; остальные 54 п.н. ДНК образуют участок, не связанный с белками сердцевины, - линкер , который, соединяя две соседние нуклеосомы, переходит в ДНК следующей нуклеосомы. Гистон H1 связывается частично с основой (сердцевиной) и с участком линкера (около 30 п.н.). Следовательно, полная нуклеосома содержит около 200 п.н. ДНК (146 п.н. - сердцевина, 30 п.н. - участок линкера в комплексе с гистоном H1, 30 п.н. - свободная ДНК), октамер сердцевинных (кóровых) гистонов и одну молекулу гистона H1 (рис. 59). Молекулярная масса полной нуклеосомы - 262 000 Да. Рассчитано, что на весь гаплоидный геном человека (3·10 9 пар оснований) приходится 1,5·10 7 нуклеосом.

Сердцевина, или кóровая частица (или минимальная нуклеосома), очень консервативна по своей структуре: она всегда содержит 146 п.н. ДНК и октамер гистонов. Линкерный участок может значительно варьировать (от 8 до 114 п.н. на нуклеосому).

Используя метод рассеяния нейтронов, удалось установить форму и точные размеры нуклеосом; при грубом приближении - это плоский цилиндр или шайба диаметром 11 нм и высотой 6 нм. Располагаясь на подложке для электронного микроскопирования, они образуют «бусины» - глобулярные образования около 10 нм, гуськом, тандемно сидящие на вытянутых молекулах ДНК. На самом же деле вытянутыми являются только линкерные участки, остальные три четверти длины ДНК спирально уложены по периферии гистонового октамера. Сам гистоновый октамер, каксчитают, имеет форму, напоминающую мяч для игры в регби, в состав которого входят тетрамер (НЗ·Н4) 2 и два независимых димера Н2А·Н2В. На рис. 60 представлена схема расположения гистонов в сердцевинной части нуклеосомы.

В фибриллах хроматина линкерный участок не линеен. Продолжая спираль ДНК на поверхности нуклеосомной частицы, он связывает соседние нуклеосомы так, что образуется как бы сплошная нить толщиной около 10 нм, состоящая из тесно расположенных нуклеосом (рис. 61). При этом за счет дополнительной спирализции ДНК (один отрицательный супервиток ДНК на одну нуклеосому) происходит первичная компактизация ДНК с плотностью упаковки, равной 6-7 (200 п.н. длиной 68 нм уложены в глобулу диаметром 10 нм). Укладка почти двух витков ДНК по периферии сердцевины нуклеосомы происходит, как считается, за счет взаимодействия положительно заряженных аминокислотных остатков на поверхности октамера гистонов с фосфатами ДНК. N- и С-концевые участки сердцевинных гистонов, обогащенные положительными зарядами, вероятно, служат для дополнительной стабилизации структуры нуклеосомы.

Ведущая роль сердцевинных (кóровых) белков в компактизации ДНК показана при самосборке нуклеосом. Регулируя последовательность добавления гистонов и ДНК, удалось получить полную реконструкцию нуклеосом. В этом процессе не играет никакой роли источник, откуда была взята ДНК: это может быть ДНК бактерии и даже циклическая ДНК вирусов. Оказалось, что для образования нуклеосом гистон H1 не требуется, он участвует в связывании уже готовых нуклеосом друг с другом и в образовании более высоких уровней компактизации ДНК. Ключевыми в построении нуклеосом оказались гистоны НЗ и Н4. При этом вначале ДНК связывается с тетрамером (НЗ·Н4) 2 , к которому позже присоединяются два димера Н2А·Н2В. Вероятно, высокая консервативность в строении гистонов НЗ и Н4 отражает их ведущую структурную роль на первых этапах компактизации ДНК при образовании нуклеосом.

Нуклеосомы при репликации и транскрипции

Как же происходит образование нуклеосом при репликации ДНК, какова судьба нуклеосом в вилке репликации, как распределяются новые и старые нуклеосомы или их белки - все эти вопросы еще до конца не разрешены.

При электронно-микроскопическом исследовании реплицирующегося хроматина было обнаружено, что обе новообразованные фибриллы содержат нуклеосомы. Если учесть скорость синтеза ДНК эукариот (20 нм/с), то новые нуклеосомы при удвоении хромосомных фибрилл должны возникать со скоростью 3-4 с. Такая высокая скорость образования нуклеосом связана с тем, что в момент синтеза ДНК уже существует пул синтезированных гистонов всех классов, готовых войти в состав нуклеосом. Гистоновые гены, относящиеся к фракции умеренно повторяющихся последовательностей ДНК, представлены в виде множественных копий для каждого гистона. Они активируются вместе с началом синтеза ДНК, поэтому по мере продвижения репликационной вилки новые участки ДНК могут сразу взаимодействовать с новосинтезированными гистонами. Новосинтезированные гистоны и старые гистоны в составе предшествующих нуклеосом не смешиваются при образовании нуклеосом во время репликации ДНК. Вместо этого октамеры гистонов, присутствующие до репликации, остаются интактными и переходят на дочерний дуплекс ДНК, в то время как новые гистоны собираются в совершенно новые кор-частицы на свободных от нуклеосом участках ДНК. Старые и новые октамеры гистонов распределяются между дочерними дуплексами ДНК случайным образом.

Что происходит со старыми нуклеосомами в вилке репликации ДНК, до конца не ясно. Согласно одной из гипотез, каждая из нуклеосом при подходе к ней репликативной вилки как бы расщепляется на дне «полу нуклеосомы», а нуклеосомная ДНК разворачивается, чтобы дать пройти этот участок ДНК-полимеразе. После этого новосинтезированная цепь ДНК связывается со свободными гистонами, которые есть в избытке в ядре, и образуются новые нуклеосомы на второй цепи ДНК.

Как уже упоминалось, для активно функционирующих зон хроматина характерно деконденсированное, диффузное, состояние. На этом свойстве хроматина основан один из методов получения фракций активного хроматина, когда с помощью центрифугирования удается осадить конденсированный хроматин из гомогенатов ядер, отделив его тем самым от диффузного хроматина, обладающего высокой транскрипционной активностью. Фракции активного хроматина обладают рядом характерных свойств: повышенной чувствительностью к нуклеазам, повышенным уровнем модификации гистонов (особенно ацетилированием гистона H1), повышенным содержанием некоторых негистоновых белков.

Биохимические данные показывают, что во время транскрипции часть нуклеосомных белков остается связанной с ДНК. Нуклеосомы как частицы видны на хроматиновых фибриллах как до места отхождения транскрипта, так и после него при редкой посадке РНК-полимеразы - фермента, вдвое большего, чем нуклеосома. При частой посадке этого фермента (например, при транскрипции рибосомных генов или генов в других активных локусах) частицы РНК-полимеразы располагаются тесно друг к другу и между ними нуклеосомы не видны (см. рис. 101). Вероятнее всего, нуклеосомные белки при прохождении РНК-полимеразы не теряют связи с ДНК, а сама ДНК в составе нуклеосомы разворачивается. Предлагаются два варианта изменения структуры нуклеосом при синтезе РНК. При одном их них нуклеосома «расщепляется» на две полунуклеосомы, а ДНК разворачивается; при другом - нуклеосома, частично декомпактизируясь, сохраняет тетрамер (НЗ·Н4) 2 , а два димера Н2А·Н2В временно отходят, а затем, после прохождения РНК-полимеразы, возвращаются, при этом восстанавливается исходная нуклеосома.

Второй уровень компактизации ДНК - фибрилла диаметром 30 нм

Таким образом, первый, нуклеосомный, уровень компактизации хроматина играет как регуляторную, так и структурную роль, обеспечивая плотность упаковки ДНК приблизительно в 6-7 раз.

Однако во многих электронно-микроскопических исследованиях было показано, что как в митотических хромосомах, так и в интерфазных ядрах выявляются фибриллы хроматина диаметром 30 нм (рис. 57, в и 62). Хроматиновые фибриллы такого диаметра были видны как на ультратонких срезах после фиксации глутаровым альдегидом, так и на препаратах выделенного хроматина и выделенных хромосом в растворах, содержащих хотя бы низкие концентрации двухвалентных катионов. Показано, что фибрилла хроматина диаметром 30 нм может обратимо менять свой диаметр: становится фибриллой толщиной 10 нм, если препараты хроматина перевести в деионизованную воду или в растворы, содержащие хелатон ЭДТА. В то же время даже частичная экстракция гистона Н1 переводит исходные фибриллы хроматина (30 нм) в нити диаметром 10 нм, имеющие типичный нуклеосомный уровень организации. При добавлении к ним гистона H1 восстанавливается первоначальный диаметр фибрилл.

Все это говорило о том, что нуклеосомные цепочки хроматина каким-то специфическим образом уложены так, что возникает не хаотическая агрегация нуклеосом, а правильная нитчатая структура диаметром 30 нм.

Относительно характера упаковки нуклеосом в составе фибриллы хроматина диаметром 30 нм существуют, по крайней мере, две точки зрения. Одна из них защищает так называемый соленоидный тип укладки нуклеосом. Согласно этой модели, нить плотно упакованных нуклеосом диаметром 10 нм образует в свою очередь спиральные витки с шагом спирали около 10 нм. На один виток такой суперспирали приходится шесть нуклеосом (см. рис. 62). В результате такой упаковки возникает фибрилла спирального типа с центральной полостью, которая иногда на негативно окрашенных препаратах бывает видна как узкий «канал» в центре фибриллы. При частичном разворачивании, декомпактизации такой фибриллы и нанесении ее на подложку хорошо видно «зигзагообразное» расположение нуклеосом вдоль фибриллы. Считается, что гистон H1 обеспечивает взаимодействие между соседними нуклеосомами, не только сближая и связывая их друг с другом, но и способствуя образованию кооперативной связи между нуклеосомами, благодаря чему возникает довольно плотная спираль из фибриллы диаметром 10 нм. Удаление, даже частичное, гистона H1Iвызывает переход фибриллы диаметром 30 нм в фибриллу диаметром 10 нм, а при полном удалении его происходит разворачивание последней в структуру типа «бусин на нити». Такой соленоидный тип упаковки ДНК приводит к плотности упаковки, равной приблизительно 40 (т.е. на каждый микрометр нити приходится 40 мкм ДНК). Эти представления получили подтверждение при анализе структуры хроматина с помощью дифракции рентгеновских лучей и нейтронов. Здесь необходимо отметить, что представление о соленоидном типе укладки получено из анализа вторично конденсированного хроматина. Вначале были получены препараты хроматина в присутствии ЭДТА или выделялись в растворах низкой ионной силы в присутствии ионов магния. Во всех этих случаях первоначально хроматин деконденсировался до уровня «бусин на нити», где отсутствует или дестабилизируется контакт между нуклеосомами.

Если же исследовать хроматин в составе ядер или в виде выделенных препаратов, но при поддержании определенной концентрации двухвалентных катионов (не ниже 1мМ), то можно видеть дискретность в составе фибрилл хроматина диаметром 30 нм: она состоит как бы из сближенных глобул того же размера - из нуклеомеров. В зарубежной литературе такие 30-нанометровые глобулы, или нуклеомеры, получили название сверхбусин («супербиды») (см. рис. 57, в и 62). Обнаружено, что если в условиях, когда нуклеомерная структура фибрилл хроматина сохраняется, препараты хроматина подвергнуть нуклеазной обработке, то часть хроматина растворяется. При этом в раствор выходят частицы, имеющие размер около 30 нм, с коэффициентом седиментации, равным 45S , в растворах, содержащих 1 мМ магния. Если такие выделенные нуклеомеры обработать ЭДТА, удалить ионы магния, то они разворачиваются в нуклеосомные цепочки, содержащие 6-8 нуклеосом. Таким образом, в состав одного нуклеомера входит отрезок ДНК, соответствующий 1600 парам оснований, или 8 нуклеосомам.

Компактность нуклеомера зависит от концентрации ионов магния и наличия гистона H1. Негистоновые белки в конформационных превращениях нуклеомеров не участвуют.

Итак, основная фибрилла хроматина диаметром 30 нм представляет собой линейное чередование нуклеомеров вдоль компактизованной молекулы ДНК (см. рис. 62). Вероятно, гистоны H1, находясь в центральной зоне этой крупной частицы и взаимодействуя друг с другом, поддерживают ее целостность. В пользу этого говорят данные о кооперативном связывании гистонов H1 в группе по 6-8 молекул.

Противоречие между соленоидной и нуклеомерной моделями упаковки нуклеосом в составе фибрилл хроматина может быть снято, если принять модель нерегулярного соленоида: число нуклеосом на виток спирали не является строго постоянной величиной, что может привести к чередованию участков с большим или меньшим числом нуклеосом на виток.

Нуклеомерный уровень укладки хроматина обеспечивает 40-кратное уплотнение ДНК, что важно не только для достижения целей компактизации гигантских молекул ДНК. Компактизация ДНК в составе фибрилл хроматина диаметром 30 нм может налагать дополнительные функциональные ограничения. Так, обнаружено, что в составе фибриллы хроматина диаметром 30 нм ДНК становится практически недоступной для взаимодействия с таким ферментом, как метилаза ДНК. Кроме того, резко падает способность хроматина связываться с РНК-полимеразой и рядом регуляторных белков. Таким образом, второй уровень компактизации ДНК может играть роль фактора, инактивирующего гены.

В заключение необходимо еще раз напомнить, что как нуклеосомный, так и нуклеомерный (супербидный) уровни компактизации ДНК хроматина осуществляются за счет гистоновых белков, которые участвуют не только в образовании нуклеосом, но и в их кооперативном объединении в виде фибрилл ДНП, где ДНК претерпевает дополнительную сверхспирализацию. Все остальные уровни компактизации связаны с дальнейшим характером укладки фибрилл диаметром 30 нм в новые компактизационные уровни, где ведущую роль играют негистоновые белки.

Негистоновые белки

Негистоновые белки составляют около 20% всех белков хроматина. По определению, негистоновые белки - это все белки хроматина (кроме гистонов), выделяющиеся с хроматином или хромосомами. Это сборная группа белков, отличающихся друг от друга как по общим свойствам, так и по функциональной значимости. Около 80% негистоновых белков относится к белкам ядерного матрикса, обнаруживаемых как в составе интерфазных ядер, так и митотических хромосом. Эта группа белков будет отдельно рассмотрена в следующем разделе , посвященном комплексу структур, входящих в состав ядерного матрикса: фиброзный слой, или ламина ядерной оболочки, и внутренний ядерный матрикс, интерхроматиновая сеть, матрикс ядрышка.

Во фракцию негистоновых белков может входить около 450 индивидуальных белков с различной молекулярной массой (5-200 кДа). Часть этих белков водорастворима, другая часть растворима в кислых растворах, а третья часть непрочно связана с хроматином и диссоциирует при 0,35 М концентрации солей (NaCl) в присутствии денатурирующих агентов (5М мочевина). Поэтому характеристика и классификация этих белков затруднены, а сами белки еще недостаточно изучены.

Среди негистоновых белков обнаруживается целый ряд регуляторных белков, как стимулирующих инициацию транскрипции, так и ингибирующих ее, а также белки, специфически связывающиеся с определенными последовательностями на ДНК. К негистоновым белкам относят также ферменты, участвующие в метаболизме нуклеиновых кислот (ДНК-полимеразы, ДНК-топоизомеразы, метилазы ДНК и РНК, РНК-полимеразы, РНКазы и ДНКазы и т.д.), белков хроматина (протеинкиназы, метилазы, ацетилазы, протеазы и др.) и многие другие.

Наиболее подробно изучены негистоновые белки так называемой группы с высокой подвижностью (HMG - high mobility group, или «белки Джонса»), Они хорошо экстрагируются в 0,35М NaCl и 5%-ной НСlО 4 и обладают высокой электрофоретической подвижностью (отсюда их название). Основных HMG-белков четыре: HMG-1 (мол. масса 25 500 Да), НМО-2 (мол. масса 26 000 Да), HMG-14 (мол. масса 100 000 Да), HMG-17 (мол. масса 9247 Да). Эта группа наиболее богато представлена среди негистоновых белков: в клетке их около 5% от всего числа гистонов. Особенно часто эти белки встречаются в активном хроматине (примерно 1 молекула HMG-белка на 10 нуклеосом). Белки HMG-1 и HMG-2 не входят в состав нуклеосом, а связываются, видимо, с линкерными участками ДНК. Белки HMG-14 и HMG-17 связываются с сердцевинными белками нуклеосом, что обеспечивает, вероятно, изменение уровня компактизации фибрилл ДНП, которые становятся более доступными для взаимодействия с РНК-полимеразой. В этом случае HMG-белки выступают в качестве регуляторов транскрипционной активности. Обнаружено, что фракция хроматина, обладающая повышенной чувствительностью к ДНКазе I, обогащена HMG-белками.

Петлевые домены ДНК - третий уровень структурной организации хроматина

Расшифровка принципа строения элементарных хромосомных компонентов - нуклеосом и фибрилл диаметром 30 нм - еще мало что дает для понимания основ трехмерной организации хромосом как в интерфазе, так и в митозе. Сорокакратное уплотнение ДНК, которое достигается при сверхспиральном характере ее компактизации, совершенно еще недостаточно для получения реального (1·10 4) уровня уплотнения ДНК. Следовательно, должны существовать более высокие уровни компактизации ДНК, которые в конечном счете определяют размеры и общие характеристики хромосом. Такие высшие уровни организации хроматина были обнаружены при искусственной его деконденсации, когда выяснилось, что поддержание их связано с негистоновыми белками. В этом случае специфические белки связываются с особыми участками ДНК, которые в местах связывания образуют большие петли, или домены. Таким образом, следующие более высокие уровни компактизации ДНК связаны не с ее дополнительной спирализацией, а с образованием поперечной петлистой структуры, идущей вдоль интерфазной или митотической хромосомы.

Как уже указывалось, сложная структура ядра, или нуклеоида, прокариот организована в виде иерархии петлевых доменов ДНК, связанных с небольшим количеством специальных белков. Петлевой прпинцип упаковки ДНК обнаруживается также и у эукариотических клеток. Так, если выделенные ядра обработать 2М NaCl , т.е. удалить все гистоны, то целостность ядра сохраняется, за исключением того, что вокруг ядра возникнет так называемое гало, состоящее из огромною числа петель ДНК. Такая структура ядер получила название «нуклеоида» (это только терминологическое сходство с ядерным аппаратом прокариот). Гало (или периферия такого нуклеоида) состоит из огромного (до 50000) количества замкнутых на периферии петель ДНК, средний размер этих петель около 60 т.п.н. Основание петель закреплено внутри ядра, на участках негистоновых белков. Тем самым считается, что после удаления гистонов основания петлевых доменов ДНК связаны с так называемым матриксом, или скэффолдом, - негистоновым белковым остовом интерфазного ядра. Оказалось, что участки ДНК, связанные с этим остовом, имеют особое сродство к негистоновым белкам. Их состав изучен, они получили название MAR - (matrix attachment region), или SAR - (scaffold attachment region) участков.

Оказалось, что петлевые домены ДНК интерфазных ядер можно выделить. В выделенных ядрах в присутствии двухвалентных катионов (2 мМ Са 2+) в хроматине ядра выявляются небольшие сгустки величиной около 100 нм - хромомеры. Если такие хромомеры препаративно выделить, а затем экстрагировать из них гистоны, то с помощью электронного микроскопа можно видеть розетковидные петлистые структуры, где отдельные петли отходят от центрального плотного участка. Количество петель в такой розетке может составлять 15-80, а общая величина ДНК может достигать 200 т.п.н. с суммарной длиной ДНК до 50 мкм. Обработка таких розеток протеиназами приводит к исчезновению плотной центральной области розетки и к разворачиванию петель ДНК.

Признаки петлевой доменной организации хроматина можно наблюдать с помощью электронного микроскопа после помещения ядер или хромосом в солевые растворы низкой ионной силы (0,01М NaCl) в присутствии низких концентраций двухвалентных катионов (1 мМ). В этих условиях не происходит депротеинизации хроматина, он сохраняет свою нормальную химическую композицию, но значительно разрыхляется и представлен стандартными фибриллами толщиной 30 нм. При этом в некоторых местах можно видеть, что отдельные сгустки конденсированного хроматина выявляют особую структуру. Это розетковидные образования, состоящие из многих петель фибрилл диаметром 30 нм, соединяющихся в общем плотном центре. Средним paзмер таких петлистых розеток достигает 100-150 нм. Подобные розетки фибрилл хроматина - хромомеры - можно видеть в ядрах самых разнообразных объектов: животных, растений, простейших (рис. 63).

Особенно демонстративно такие хромомеры выявляются на тотальных препаратах хроматина из макронуклеусов инфузории Bursaria . В этом случае можно видеть, что каждый хромомер состоит из нескольких содержащих нуклеосомы петель, которые связаны в одном центре. Хромомеры связаны друг с другом участками нуклеосомного хроматина, так что в целом видна цепочка розетковидных структур (рис. 64).

Сходные картины можно наблюдать при разрыхлении политенных хромосом. Здесь хромомеры в виде розеток хроматина выявляются в зонах хроматиновых дисков, в то время как междисковые участки их не содержат (рис. 65). При деконденсации хроматина ядер некоторых растений (Allium, Haemantnus, Vicia ), для которых характерна особая структура интерфазных ядер, хромомеры видны в составе хромонемных нитей.

Подобные розетковидные петлистые структуры - хромомеры, можно видеть также при разрыхлении митотических хромосом как животных, так и растений. Следовательно, хромосомные фибриллы диаметром 30 им, состоящие из ДНК и гистонов, упаковываются в виде петлистых розетковидных структур, претерпевая еще дополнительную компактизацию. Этот третий уровень структурной организации хроматина, как считается, может приводить уже к 600-кратной комнактизации ДНК (рис. 66).

Важно отметить, что размер отдельных петлевых доменов совпадает с размером средних репликонов и может соответствовать одному или нескольким генам. В своих основаниях петли ДНК связаны негистоновыми белками ядерного матрикса, в состав которых могут входить как ферменты репликации ДНК, так и транскрипции. Такая петельно-доменная структура хроматина не только обеспечивает структурную компактизацию хроматина, но и организует функциональные единицы хромосом - репликоны и транскрибируемые гены. Комплекс белков, участвующих в такой структурно-функциональной организации хроматина, относится к белкам ядерного матрикса.